Binu, D.; Rajakumar, B.R. Artificial Intelligence in Data Mining: Theories and Applications; Academic Press: Cambridge, MA, USA, 2021.
Ahmadi, A.; Meybodi, M.R.; Saghiri, A.M. Adaptive search in unstructured peer-to-peer networks based on ant colony and Learning Automata. In Proceedings of the 2016 Artificial Intelligence and Robotics, Qazvin, Iran, 9 April 2016.
Cheng, X.; Lin, X.; Shen, X.-L.; Zarifis, A.; Mou, J. The dark sides of AI. Electron. Mark. 2022, 1–5. [CrossRef]
Jabbarpour, M.R.; Saghiri, A.M.; Sookhak, M. A framework for component selection considering dark sides of artificial intelligence: A case study on autonomous vehicle. Electronics 2021, 10, 384. [CrossRef]
Kumar, G.; Singh, G.; Bhatanagar, V.; Jyoti, K. Scary dark side of artificial intelligence: A perilous contrivance to mankind. Humanit. Soc. Sci. Rev. 2019, 7, 1097–1103. [CrossRef]
Mahmoud, A.B.; Tehseen, S.; Fuxman, L. The dark side of artificial intelligence in retail innovation. In Retail Futures; Emerald Publishing Limited: Bingley, UK, 2020.
Wirtz, B.W.; Weyerer, J.C.; Sturm, B.J. The dark sides of artificial intelligence: An integrated AI governance framework for public administration. Int. J. Public Adm. 2020, 43, 818–829. [CrossRef]
Hanif, M.A.; Khalid, F.; Putra, R.V.W.; Rehman, S.; Shafique, M. Robust machine learning systems: Reliability and security for deep neural networks. In Proceedings of the 2018 IEEE 24th International Symposium on On-Line Testing and Robust System Design (IOLTS), Platja d’Aro, Spain, 2–4 July 2018; pp. 257–260.
Varshney, K.R. Engineering safety in machine learning. In Proceedings of the 2016 Information Theory and Applications Workshop (ITA), La Jolla, CA, USA, 31 January–5 February 2016; pp. 1–5.
Bellamy, R.K.; Dey, K.; Hind, M.; Hoffman, S.C.; Houde, S.; Kannan, K.; Lohia, P.; Martino, J.; Mehta, S.; Mojsilovi´c, A. AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM J. Res. Dev. 2019, 63, 4:1–4:15. [CrossRef]
Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for deep learning in NLP. arXiv 2019, arXiv:1906.02243.
Smuha, N.A. The EU approach to ethics guidelines for trustworthy artificial intelligence. Comput. Law Rev. Int. 2019, 20, 97–106. [CrossRef]
Legg, S.; Hutter, M. A collection of definitions of intelligence. Front. Artif. Intell. Appl. 2007, 157, 17.
Legg, S. Machine Super Intelligence. Ph.D. Thesis, University of Lugano, Lugano, Switzerland, 2008
Saghiri, A.M. A Survey on Challenges in Designing Cognitive Engines. In Proceedings of the 2020 6th International Conference on Web Research (ICWR), Tehran, Iran, 22–23 April 2020; pp. 165–171.
Boström, N. Superintelligence: Paths, Dangers, Strategies; Oxford University Press: Oxford, UK, 2014.
Chollet, F. On the measure of intelligence. arXiv 2019, arXiv:1911.01547.
Yampolskiy, R.V. Human is not equal to AGI. arXiv 2020, arXiv:2007.07710.
Searle, J.R. Minds, brains, and programs. Behav. Brain Sci. 1980, 3, 417–424. [CrossRef]
Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 1994.
Linz, P. An Introduction to Formal Languages and Automata; Jones & Bartlett Learning: Burlington, MA, USA, 2006.
Lenat, D.B.; Guha, R.V.; Pittman, K.; Pratt, D.; Shepherd, M. Cyc: Toward programs with common sense. Commun. ACM 1990, 33, 30–49. [CrossRef]
Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; Cambridge University Press: Cambridge, UK, 1998.
Steane, A. Quantum computing. Rep. Prog. Phys. 1998, 61, 117. [CrossRef]
Wheeldon, A.; Shafik, R.; Rahman, T.; Lei, J.; Yakovlev, A.; Granmo, O.-C. Learning automata based energy-efficient AI hardware design for IoT applications. Philos. Trans. R. Soc. A 2020, 378, 20190593. [CrossRef] [PubMed]
Priya, S.; Inman, D.J. Energy Harvesting Technologies; Springer: Berlin/Heidelberg, Germany, 2009.
Kamalinejad, P.; Mahapatra, C.; Sheng, Z.; Mirabbasi, S.; Leung, V.C.; Guan, Y.L. Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 2015, 53, 102–108. [CrossRef]
Baig, M.I.; Shuib, L.; Yadegaridehkordi, E. Big Data Tools: Advantages and Disadvantages. J. Soft Comput. Decis. Support Syst. 2019, 6, 14–20.
Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 2017, 70, 263–286. [CrossRef]
Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 2016, 67. [CrossRef]
Qayyum, A.; Qadir, J.; Bilal, M.; Al-Fuqaha, A. Secure and robust machine learning for healthcare: A survey. IEEE Rev. Biomed. Eng. 2020, 14, 156–180. [CrossRef]
Bhagoji, A.N.; Cullina, D.; Sitawarin, C.; Mittal, P. Enhancing robustness of machine learning systems via data transformations. In Proceedings of the 2018 52nd Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 21–23 March 2018; pp. 1–5
Rozsa, A.; Günther, M.; Boult, T.E. Are accuracy and robustness correlated. In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016; pp. 227–232.
Pérez-Rosas, V.; Abouelenien, M.; Mihalcea, R.; Burzo, M. Deception detection using real-life trial data. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 59–66.
Krishnamurthy, G.; Majumder, N.; Poria, S.; Cambria, E. A deep learning approach for multimodal deception detection. arXiv 2018, arXiv:1803.00344.
Randhavane, T.; Bhattacharya, U.; Kapsaskis, K.; Gray, K.; Bera, A.; Manocha, D. The Liar’s Walk: Detecting Deception with Gait and Gesture. arXiv 2019, arXiv:1912.06874.
Zhao, S.; Jiang, G.; Huang, T.; Yang, X. The deception detection and restraint in multi-agent system. In Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’05), Hong Kong, China, 14–16 November 2005; pp. 44–48.
Zlotkin, G.; Rosenschein, J.S. Incomplete Information and Deception in Multi-Agent Negotiation. In Proceedings of the IJCAI, Sydney, Australia, 24–30 August 1991; Volume 91, pp. 225–231.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.
Blitz, M.J. Lies, Line Drawing, and Deep Fake News. Okla. Law Rev. 2018, 71, 59
Tsai, C.-F.; Hsu, Y.-F.; Lin, C.-Y.; Lin, W.-Y. Intrusion detection by machine learning: A review. Expert Syst. Appl. 2009, 36, 11994–12000. [CrossRef]
Pawar, S.N.; Bichkar, R.S. Genetic algorithm with variable length chromosomes for network intrusion detection. Int. J. Autom. Comput. 2015, 12, 337–342. [CrossRef]
Kinsner, W. Towards cognitive security systems. In Proceedings of the 11th International Conference on Cognitive Informatics and Cognitive Computing, Kyoto, Japan, 22–24 August 2012; p. 539.
Biggio, B.; Fumera, G.; Roli, F. Security evaluation of pattern classifiers under attack. IEEE Trans. Knowl. Data Eng. 2014, 26, 984–996. [CrossRef]
Barreno, M.; Nelson, B.; Sears, R.; Joseph, A.D.; Tygar, J.D. Can machine learning be secure? In Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, Taipei, Taiwan, 21–24 March 2006; pp. 16–25.
Yampolskiy, R.V. Artificial Intelligence Safety and Security; CRC Press: Boca Raton, FL, USA, 2018.
Huang, L.; Joseph, A.D.; Nelson, B.; Rubinstein, B.I.; Tygar, J. Adversarial machine learning. In Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, Chicago, IL, USA, 21 October 2011; pp. 43–58.
Ateniese, G.; Felici, G.; Mancini, L.V.; Spognardi, A.; Villani, A.; Vitali, D. Hacking smart machines with smarter ones: How toextract meaningful data from machine learning classifiers. arXiv 2013, arXiv:1306.4447. [CrossRef]
Tucker, C.; Agrawal, A.; Gans, J.; Goldfarb, A. Privacy, algorithms, and artificial intelligence. In The Economics of Artificial Intelligence: An Agenda; Oxford University Press: Oxford, UK, 2018; pp. 423–437.
Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–19. [CrossRef]
Zhang, W.; Ntoutsi, E. Faht: An adaptive fairness-aware decision tree classifier. arXiv 2019, arXiv:1907.07237.
Kamani, M.M.; Haddadpour, F.; Forsati, R.; Mahdavi, M. Efficient fair principal component analysis. In Machine Learning; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–32.
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; Zemel, R. Fairness through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, Cambridge, MA, USA, 8–10 January 2012; pp. 214–226.
Kamiran, F.; Calders, T. Classifying without discriminating. In Proceedings of the 2009 2nd International Conference on Computer, Control and Communication, Karachi, Pakistan, 17–18 February 2009; pp. 1–6.
Calders, T.; Kamiran, F.; Pechenizkiy, M. Building classifiers with independency constraints. In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, Miami, FL, USA, 6 December 2009; pp. 13–18.
Quy, T.L.; Roy, A.; Iosifidis, V.; Ntoutsi, E. A survey on datasets for fairness-aware machine learning. arXiv 2021, arXiv:2110.00530.
Hardt, M.; Price, E.; Srebro, N. Equality of opportunity in supervised learning. Adv. Neural Inf. Process. Syst. 2016, 29, 1–9.
Kamishima, T.; Akaho, S.; Sakuma, J. Fairness-aware learning through regularization approach. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011; pp. 643–650.
Goh, G.; Cotter, A.; Gupta, M.; Friedlander, M.P. Satisfying real-world goals with dataset constraints. Adv. Neural Inf. Process. Syst. 2016, 29, 1–9.
Calders, T.; Verwer, S. Three naive Bayes approaches for discrimination-free classification. Data Min. Knowl. Discov. 2010, 21, 277–292. [CrossRef]
Donini, M.; Oneto, L.; Ben-David, S.; Shawe-Taylor, J.S.; Pontil, M. Empirical risk minimization under fairness constraints. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11.
Morgenstern, J.; Samadi, S.; Singh, M.; Tantipongpipat, U.; Vempala, S. Fair dimensionality reduction and iterative rounding for sdps. arXiv 2019, arXiv:1902.11281.
Samadi, S.; Tantipongpipat, U.; Morgenstern, J.H.; Singh, M.; Vempala, S. The price of fair pca: One extra dimension. Adv. Neural Inf. Process. Syst. 2018, 31, 1–12.
Pleiss, G.; Raghavan, M.; Wu, F.; Kleinberg, J.; Weinberger, K.Q. On fairness and calibration. Adv. Neural Inf. Process. Syst. 2017, 30, 1–10.
Adadi, A.; Berrada, M. Explainable AI for healthcare: From black box to interpretable models. In Embedded Systems and Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 327–337.
Gade, K.; Geyik, S.C.; Kenthapadi, K.; Mithal, V.; Taly, A. Explainable AI in industry. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 3203–3204. 67. Došilovi´c, F.K.; Brˇci´c, M.; Hlupi´c, N. Explainable artificial intelligence: A survey. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 0210–0215.
Samek, W.; Müller, K.-R. Towards explainable artificial intelligence. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer: Berlin/Heidelberg, Germany, 2019; pp. 5–22.
Sharma, S.; Nag, A.; Cordeiro, L.; Ayoub, O.; Tornatore, M.; Nekovee, M. Towards explainable artificial intelligence for network function virtualization. In Proceedings of the 16th International Conference on Emerging Networking EXperiments and Technologies, Barcelona, Spain, 1–4 December 2020; pp. 558–559.
Matthias, A. The responsibility gap: Ascribing responsibility for the actions of learning automata. Ethics Inf. Technol. 2004, 6, 175–183. [CrossRef].
Neri, E.; Coppola, F.; Miele, V.; Bibbolino, C.; Grassi, R. Artificial Intelligence: Who Is Responsible for the Diagnosis? Springer: Berlin/Heidelberg, Germany, 2020.
Stannett, M. X-machines and the halting problem: Building a super-Turing machine. Form. Asp. Comput. 1990, 2, 331–341. [CrossRef]
Rybalov, A. On the strongly generic undecidability of the Halting Problem. Theor. Comput. Sci. 2007, 377, 268–270. [CrossRef]
Yampolskiy, R.V. On Controllability of AI. arXiv 2020, arXiv:2008.04071.
Russell, S. Human Compatible: Artificial Intelligence and the Problem of Control; Penguin: London, UK, 2019.
Yampolskiy, R. On Controllability of Artificial Intelligence; Technical Report; University of Louisville: Louisville, KY, USA, 2020.
Dawson, J. Logical Dilemmas: The Life and Work of Kurt Gödel; AK Peters: Natick, MA, USA; CRC Press: Boca Raton, FL, USA, 1996.
Yampolskiy, R.V. Unpredictability of AI. arXiv 2019, arXiv:1905.13053.
Hofstadter, D.R. I Am a Strange Loop; Basic Books: New York, NY, USA, 2007.
Musiolik, G. Predictability of AI Decisions. In Analyzing Future Applications of AI, Sensors, and Robotics in Society; IGI Global: Hershey, PA, USA, 2021; pp. 17–28.
Hassani, H.; Silva, E.S.; Unger, S.; TajMazinani, M.; Mac Feely, S. Artificial intelligence (AI) or intelligence augmentation (IA): What is the future? AI 2020, 1, 143–155. [CrossRef]
Widrow, B.; Aragon, J.C. Cognitive Memory. Neural Netw. 2013, 41, 3–14. [CrossRef]
Luccioni, A.; Bengio, Y. On the Morality of Artificial Intelligence. IEEE Technol. Soc. Mag. 2020, 39, 16–25. [CrossRef]
Abdel-Fattah, A.M.; Besold, T.R.; Gust, H.; Krumnack, U.; Schmidt, M.; Kuhnberger, K.-U.; Wang, P. Rationality-guided AGI as cognitive systems. In Proceedings of the Annual Meeting of the Cognitive Science Society, Sapporo, Japan, 1–4 August 2012; Volume 34.
Gigerenzer, G.; Selten, R. Rethinking rationality. Bounded Rationality: The Adaptive Toolbox; MIT Press: Cambridge, MA, USA, 2001; Volume 1, p. 12.
Halpern, J.Y.; Pass, R. Algorithmic rationality: Game theory with costly computation. J. Econ. Theory 2015, 156, 246–268. [CrossRef].
Russell, S.J. Rationality and intelligence. Artif. Intell. 1997, 94, 57–77. [CrossRef]
Abdel-Fattah, A.M.; Besold, T.R.; Gust, H.; Krumnack, U.; Schmidt, M.; Kuhnberger, K.-U.; Wang, P. Rationality-guided AGI as cognitive systems. In Proceedings of the Annual Meeting of the Cognitive Science Society, Sapporo, Japan, 1–4 August 2012; Volume 34.
Gigerenzer, G.; Selten, R. Rethinking rationality. Bounded Rationality: The Adaptive Toolbox; MIT Press: Cambridge, MA, USA, 2001; Volume 1, p. 12.
Halpern, J.Y.; Pass, R. Algorithmic rationality: Game theory with costly computation. J. Econ. Theory 2015, 156, 246–268. [CrossRef]
Russell, S.J. Rationality and intelligence. Artif. Intell. 1997, 94, 57–77. [CrossRef]
Gabor, T.; Illium, S.; Zorn, M.; Linnhoff-Popien, C. Goals for Self-Replicating Neural Networks. In Proceedings of the ALIFE 2021: The 2021 Conference on Artificial Life, Prague, Czech Republic, 19–23 July 2021.
Spector, L. Evolution of artificial intelligence. Artif. Intell. 2006, 170, 1251–1253. [CrossRef]
Thiebes, S.; Lins, S.; Sunyaev, A. Trustworthy artificial intelligence. Electron. Mark. 2021, 31, 447–464. [CrossRef]
Kaur, D.; Uslu, S.; Rittichier, K.J.; Durresi, A. Trustworthy Artificial Intelligence: A Review. ACM Comput. Surv. (CSUR) 2022, 55, 1–38. [CrossRef].
Chen, R.J.; Lu, M.Y.; Chen, T.Y.; Williamson, D.F.; Mahmood, F. Synthetic data in machine learning for medicine and healthcare. Nat. Biomed. Eng. 2021, 5, 493–497. [CrossRef] [PubMed]
El Emam, K.; Mosquera, L.; Hoptroff, R. Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data; O’Reilly Media: Sebastopol, CA, USA, 2020.
Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.-M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. Carbon emissions and large neural network training. arXiv 2021, arXiv:2104.10350.
Haibe-Kains, B.; Adam, G.A.; Hosny, A.; Khodakarami, F.; Waldron, L.; Wang, B.; McIntosh, C.; Goldenberg, A.; Kundaje, A.; Greene, C.S. Transparency and reproducibility in artificial intelligence. Nature 2020, 586, E14–E16. [CrossRef] [PubMed]