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Abstract. Computer-aided diagnosis and analysis of medical imaging depend on the precise 

segmentation of anatomical structures and anomalies. High segmentation accuracy is attained 

by Deep Learning (DL) algorithms; nevertheless, real-time applications are hindered by their 

computing needs. Furthermore, a lot of advanced segmentation techniques might not be the best 

for medical imaging even while they work well for segmenting objects in general. In order to 

improve the segmentation of medical images, this study presents Mini net, a lightweight 

segmentation network. Mini-Net can analyse data in real time because it efficiently records both 

high- and low-frequency information with less than 38,000 parameters. MoNuSeg, ISIC-2016, 

ISIC-2018, and DRIVE are among the benchmark datasets used to assess Mini-Net. The results 

show its durability and strength. Mini-Net achieves competitive accuracy compared to existing 

state-of-the-art methods while maintaining efficiency. 

Keywords: Segmentation, Medical Imaging, Deep learning, Mini-Net, Convolutional Neural 

Networks. 

1. INTRODUCTION 

Accurately defining anatomical features or anomalies in medical images is crucial for both illness 

evaluation and treatment planning. Computer-assisted approaches can be more effective than manual or 

semiautomatic approaches, which were laborious, subjective, and vulnerable to interobserver variability. 

Medical picture segmentation has been transformed by DL developments, which use sizable, annotated 

datasets and carefully constructed neural networks to acquire intricate representations of images and 

accurately infer pixel-level labels. A state-of-the-art combination of computer vision and medical 

imaging, medical image segmentation aims to derive valuable information from complex medical 

images. As imaging technologies like Computed Tomography (CT), PET, and Magnetic Resonance 

Imaging (MRI) proliferate, it is becoming increasingly crucial to precisely identify and analyse any 

diseased areas or anatomical features in these pictures. This accuracy is now crucial for medical research, 

therapy planning, and clinical diagnosis.  

 

For an accurate diagnosis and the best possible treatment planning, medical pictures must accurately 

segment anatomical structures and anomalies [1,2,3]. Even for human professionals, however, this work 

presents considerable difficulties because of things like unclear structural boundaries, a variety of 

textures, an uneven distribution of intensity, intrinsic uncertainty in segmented sections, contrast 

fluctuations, and a lack of annotated datasets. Numerous research initiatives have been launched in an 

attempt to overcome these obstacles due to the pressing need for automated segmentation algorithms in 

medical imaging. For instance, three multiscale kernels were used to capture big, medium, and thin 

vessels in a fully convolutional multiscale residual network that was proposed for retinal vascular 

segmentation [4]. A block matching technique and multiscale triple stick filtration method were used to 

segment large and thin retinal arteries [5]. To automatically identify small vessels in fundus pictures with 

noise, an enhanced ensemble block matching method was also suggested [6], [7]. The two main 

categories of segmentation methods now in use are supervised and unsupervised. Supervised methods 

use pairs of annotated training images to learn, while unsupervised methods use minimal characteristics 

and ad hoc rules without marking, which restricts their generalisability. 
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Digital image processing is a broad field of research that encompasses, among other things, machine 

vision, medical imaging, astronomy, microscopy, and geology. The process of conducting research in 

science and medicine involves multiple steps. When medical imaging makes it possible to automatically 

divide medical images and create computer-aided designs, it is an essential step. They specifically aid in 

improving the accuracy and scheduling of surgical treatments via the utilisation of interactions between 

humans and machines. In order to provide practical diagnostic tools for the medical industry, this 

approach consists of two components: creating imaging devices and putting a treatment plan into action. 

Medical tools of all kinds were used to make segment images of the human anatomy. Two of the most 

popular non-invasive imaging methods for taking pictures of human organs are CT and MRI.  

 

The use of medical imaging technologies has recently moved from lab settings to patient bedsides. In 

order to improve patient care, this method—known as point-of-care imaging—involves conducting 

assessment and evaluation right next to the patient. This change anticipates more lightweight and real-

time medical AI models. Point-Of-Care Ultrasound (POCUS) task switching has used in infectious 

conditions, obstetrics, gynaecology, medical emergencies, and cardiovascular, gastrointestinal, and lung 

diseases. It has an opportunity to increase medical imaging ability at primary care providers in areas with 

limited resources and produce significant health outcomes [8]. Point-of-care AI systems must take into 

account factors like instantaneous efficiency, deployability, and minimal structure. A real-time AI system 

and point-of-care system were created [9] to assist clinicians in diagnosing a variety of skin conditions. 

In such cases, segmentation that is both lightweight and fast is essential because it guarantees that the AI 

system can precisely and rapidly define regions of interest, enabling effective operation on devices with 

limited resources and delivering accurate, rapid outcomes. 

 

Researchers have been investigating the use of lightweight techniques within neural networks in order to 

improve extracting features efficiency. These strategies include weight quantisation, low-rank 

approximation, and network pruning. Depth-wise differentiated convolutions are used in popular 

minimalist techniques like the MobileNet series to minimise processing and variables. To improve and 

balance the interactions between channels, Shufflenet and Shufflenet V2 introduce channel split and 

channel shuffle. In order to reduce FLOPs more, Ghostnet and CEModule use group convolutions in 

conjunction with depth-wise separated convolutions and a number of basic linear operations to substitute 

some convolutional operations. Two branches are used by BiseNet and BiseNet V2 to gather spatial and 

semantic data; the latter improves the framework and adds new training techniques. Due to their 

exceptional precision and ability to combine the advantages of Mobile Net and Transformer, lightweight 

Transformer techniques like Mobile-Former, ToPFormer, and MobileViT have also drawn a lot of 

interest. For parameter reduction, UNeXt uses mobile tokenisation MLPs (multilayer perceptrons) in 

place of convolutional layers.  

2. LITERATURE REVIEW 

Even though these models are quite effective, solutions that are specific to devices with limited resources 

are still required. Khan et al., have developed a macrolevel neural network system for medical picture 

segmentation by analysing image difficulty in order to address this difficulty. To limit the model's size 

and capacity, they employ a version of U-Net that has fewer filters and shallower encoder blocks [10]. 

Iqbal et al., have developed a small-scale neural network that reduces computational redundancy by 

removing feature overlap, for the purpose of segmenting retinal arteries [11]. Tariq et al., have enhanced 

segmentation performance by employing numerous kernels of varying sizes to optimise the field of 

reception [12]. Arsalan et al., have created a neural network with three million parameters for polyp 

classification using a multi-scale transmitted approach [13]. Razzak et al., have offered an attribute of 

the improvement segmentation network that eliminates the necessity for pre-training picture 

augmentation, hence lowering the computational cost involved [14]. 

Lang et al., have suggested a novel method. This approach processes features and performs fusion 

restoration in the decoder by using self-attention techniques, in order to preserve spatial features while 

collecting global contextual data [15]. Liu et al., have suggested the use of a Detailed Enhancement and 

Denoising block (DED) to improve the segmentation accuracy of tiny pathologic lesions [16]. Valanarasu 

et al., have presented UNeXt, a framework tailored for image partitioning that combines convolutional 

structures with MLP-based mechanisms. The architecture includes a preliminary convolutional phase, 

succeeded by an embedded MLP module, where tokenized MLP components reshape convolution-

derived representations. This approach decreases the number of parameters and computational burden 



 

 

 

Sonia.et.al/ Computer Science, Engineering and Technology, 1(1), March 2025, 71-79 

Copyright@2023REST Publisher                                                                                                                     73 

 

while boosting segmentation efficiency by redistributing input channels to grasp localized relationships 

[17]. 

  

Ruan et al., have presented EGE-UNet, which combines Group multi-axis Hadamard Product Attention 

(GHPA) and Group Aggregation Bridge (GAB) components to efficiently extract various pathologic 

details and combine multifaceted options, resulting in a much smaller network size [18]. Liu et al., have 

presented Rolling-UNet, which combines CNN and MLP to efficiently capture both local characteristics 

and long-distance dependencies, to enhance medical picture segmentation [19]. Li et al., have 

implemented U-KAN, an improved U-Net variant that integrates Kolmogorov-Arnold networks (KANs), 

in order to boost precision and accessibility in segmenting medical images and diffusion models [20,21]. 

This variant accomplished greater efficiency at a lower computational cost than conventional U-Net 

methods. 

 

Tan et al., have suggested a straightforward yet effective composite scale technique that builds upon 

current baseline convolutional neural network models without compromising model validity, after a 

thorough analysis of the effects of network depth and width [22]. For the purpose of segmenting lesions 

in ultrasound images, Li et al., have presented a simplified version of U-Net. Applications with limited 

resources can benefit greatly from this model's ability to strike a compromise between accuracy and 

processing economy [23]. In order to preserve spatial features while collecting global context-related 

data, Lang et al., have suggested a novel method. This approach processes features and performs fusion 

restoration in the decoder by using self-attention techniques [24]. Liu et al., have stated the use of a 

detailed enhancing and denoising block (DED) to improve the classification accuracy of tiny pathologic 

lesions [25]. 

3. RESEARCH METHODOLOGY 

The research methodology focuses on developing and accessing Mini-Net, a compact DL model for 

medical image segmentation. The model is designed with an optimized architecture to enhance 

segmentation accuracy while minimizing computational complexity. Training and validation are 

performed using benchmark datasets such as DRIVE, ISIC-2016, ISIC-2018, and MoNuSeg. 

Preprocessing techniques standardize input images to improve feature extraction. Mini-Net’s 

performance is evaluated using metrics like Dice coefficient, Intersection over Union (IoU), sensitivity, 

and specificity. A comparative analysis is conducted against state-of-the-art methods to assess 

segmentation accuracy and efficiency. The study ensures robustness by testing across diverse medical 

imaging modalities. The lightweight design facilitates real-time processing without compromising 

performance. Model training utilizes optimized hyperparameters to achieve balanced learning. Data 

augmentation techniques enhance generalization and prevent overfitting. Statistical analysis validates the 

significance of Mini-Net’s improvements. The results demonstrate its potential for efficient and accurate 

medical image segmentation. 

DL Methods for Enhanced Image Segmentation in Medical Imaging: Enhanced image segmentation 

in medical imaging has been significantly improved with the integration of advanced DL methods. 

Convolutional Neural Networks (CNNs) serve as the foundation for many segmentation models, 

enabling efficient feature extraction and spatial analysis. Fully Convolutional Networks (FCNs) extend 

CNNs by replacing fully connected layers with convolutional layers, facilitating pixel-wise predictions. 

U-Net, a widely adopted architecture, enhances segmentation accuracy with its encoder-decoder structure 

and skip connections, making it effective for biomedical image segmentation. Variants such as Attention 

U-Net incorporate attention mechanisms to focus on relevant regions, improving segmentation precision. 

Transformer-based models, including Vision Transformers (ViTs) and Swin Transformers, leverage self-

attention mechanisms to capture long-range dependencies in medical images. Additionally, Generative 

Adversarial Networks (GANs) enhance segmentation by generating realistic synthetic images for data 

augmentation and refining predictions. Deep reinforcement learning has also been explored to optimize 

segmentation strategies dynamically. Hybrid approaches, combining CNNs with transformers or 

incorporating multi-scale feature extraction, further enhance segmentation performance. These 

advancements contribute to improved diagnostic accuracy and automation in medical imaging 

applications. 
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4. MINI-NET ARCHITECTURE 

Mini-Net is a lightweight DL architecture designed for efficient medical image segmentation, balancing 

accuracy and computational efficiency. It follows an encoder-decoder structure, incorporating depth wise 

separable convolutions to reduce the number of parameters while maintaining feature extraction 

capabilities. The encoder extracts hierarchical features through stacked convolutional layers with batch 

normalization and ReLU activation, while the bottleneck layer captures essential spatial and contextual 

information in a compact representation. The decoder reconstructs the segmented output using up 

sampling layers and transposed convolutions, complemented by skip connections to retain spatial details. 

The final segmentation mask is generated using a SoftMax activation function for multi-class 

segmentation or a sigmoid activation for binary tasks. This design ensures Mini-Net achieves high 

segmentation accuracy while enabling real-time processing in medical imaging applications. 

Input Representation: Let the input medical image be represented as: 

𝐼 ∈  ℝ𝐻×W×C 

where: 

• 𝐻 is the height of the image. 

• W is the width of the image. 

• C is the number of channels (grayscale: C = 1, RGB: C = 3). 

Before feeding into the network, the input image undergoes preprocessing steps such as resizing, 

normalization, and contrast enhancement. These preprocessing steps help improve feature extraction by 

ensuring consistency across datasets. 

Convolutional Encoding: The encoder consists of convolutional layers designed to extract spatial and 

contextual features from the input image. The general form of a convolutional layer operation is: 

𝐹𝑙 = 𝜎(𝑊𝑙 ∗ 𝐹𝑙−1 +  𝑏𝑙) 

where: 

• 𝐹𝑙 represents the output feature map at layer 𝑙. 

• 𝑊𝑙 is the convolutional filter (kernel) at layer 𝑙. 

• ∗ denotes the convolution operation. 

• 𝑏𝑙  is the bias term added after convolution. 

• 𝜎 is the activation function (ReLU). 

• 𝐹𝑙−1 is the input to the convolutional layer, which is either the original image (for the first 

layer) or the output of the previous convolutional layer. 

The convolutional layer detects edges, textures, and patterns in the input image, enabling hierarchical 

feature extraction. Mini-Net uses depth wise separable convolutions to improve computational efficiency 

while maintaining expressive feature learning. 

Depth wise Convolution: Unlike standard convolutions, Mini-Net uses depth wise separable 

convolutions, which divide the operation into two steps: 

Instead of applying a single filter to all input channels, depth wise convolution applies a separate filter 

to each channel independently: 

𝐹𝑑
𝑙 = ∑ 𝑊𝑙,𝑘

(𝑑)
∗

𝐾

𝑘=1
 𝐹𝑙−1,𝑘 
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where: 

• 𝐹𝑑
𝑙  is the intermediate output after depthwise convolution. 

• 𝐾 represents the number of channels in the input feature map. 

• 𝑊𝑙,𝑘
(𝑑)

 is the depth wise filter applied to the 𝑘-th channel. 

• 𝐹𝑙−1,𝑘is the 𝑘 -th channel of the input feature map. 

This reduces the number of parameters by eliminating cross-channel interactions in this step. 

 

Pointwise Convolution: A 1×1 convolution (pointwise convolution) is then applied to recombine the 

channel-wise outputs: 

𝐹𝑙  = 𝑊𝑙
(𝑝)

 * 𝐹𝑙
(𝑑)

 

where: 

• 𝑊𝑙
(𝑝)

 is the pointwise filter applied to merge information across different channels. 

• 𝐹𝑙
(𝑑)

 is the output of the depth wise convolution. 

This operation maintains spatial relationships while significantly reducing computational costs compared 

to traditional convolutions. 

Bottleneck Feature Representation: The bottleneck layer is a crucial component of Mini-Net, 

compressing the feature maps while retaining critical information for segmentation. The transformation 

in the bottleneck layer is given by: 

𝐹𝑏 = 𝑅𝑒𝐿𝑈(𝑊𝑏 ∗ 𝐹𝑒𝑛𝑐 +  𝑏𝑏) 

where: 

• 𝐹𝑏 is the bottleneck feature representation. 

• 𝑊𝑏 and 𝑏𝑏 are the weights and bias of the bottleneck layer. 

• 𝐹𝑒𝑛𝑐 is the encoded feature map before the bottleneck. 

The bottleneck ensures the network learns compact, high-level representations of the image, reducing 

redundant computations while preserving necessary spatial features. 

Up sampling and Decoding: The decoder reconstructs the segmented image using up sampling and 

transposed convolutions to restore spatial resolution. The up-sampling operation is given by: 

𝐹𝑢𝑝 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝐹𝑏) + 𝑊𝑑 ∗ 𝐹𝑏 

where: 

• 𝐹𝑢𝑝 is the feature map after up sampling. 

• 𝑊𝑑 represents the transposed convolution filter, which learns how to expand feature maps. 

Additionally, skip connections are introduced to enhance segmentation accuracy. Skip connections link 

corresponding encoder and decoder layers, preserving fine details that may be lost during encoding: 

𝐹𝑑𝑒𝑐 = 𝐹𝑢𝑝 + 𝐹𝑒𝑛𝑐  

where: 

• 𝐹𝑑𝑒𝑐is the final feature representation before segmentation output. 
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• 𝐹𝑒𝑛𝑐 is the corresponding encoder feature map. 

This fusion of high-level and low-level features improves segmentation accuracy, ensuring precise 

boundary delineation in medical images. 

The final segmentation mask is generated using an activation function applied to the output of the 

decoder. Two cases arise based on the type of segmentation task: 

Multi-Class Segmentation (Softmax Activation): The final segmentation mask is generated using an 

activation function applied to the output of the decoder. Two cases arise based on the type of 

segmentation task: 

For multi-class segmentation, each pixel is classified into one of several classes using the SoftMax 

function: 

P(x) = 
𝑒

𝐹𝑜𝑢𝑡(𝑥)

∑ 𝑒
𝐹𝑜𝑢𝑡(𝑗)

𝑗

 

where: 

• P(x) is the probability of a pixel belonging to a particular class. 

• 𝐹𝑜𝑢𝑡(𝑥) is the output feature at pixel x. 

• The denominator ensures that the sum of probabilities for all classes at each pixel equals 1. 

Binary Segmentation (Sigmoid Activation): For binary segmentation (e.g., lesion vs. non-lesion 

classification), the sigmoid function is used: 

𝑃(𝑥) =
1

1 +  𝑒−𝐹𝑜𝑢𝑡(𝑥) 
 

where: 

• 𝐹𝑜𝑢𝑡(𝑥) is the final pixel-wise output. 

• The sigmoid function maps values to a probability range of (0,1), allowing binary classification 

of each pixel. 

The output segmentation mask provides a pixel-wise classification of anatomical structures, ensuring 

precise segmentation with minimal computational overhead. 

Table 1. Datasets used in the study 

 

 

 

 

 

 

 



 

 

 

Sonia.et.al/ Computer Science, Engineering and Technology, 1(1), March 2025, 71-79 

Copyright@2023REST Publisher                                                                                                                     77 

 

TABLE 2. Comparing Mini-Net's performances with several SOTA techniques on the ISIC 2018 and ISIC 2016 

segmentation of skin lesions datasets. 

 

TABLE 3. Mini-Net is contrasted with other current research on the DRIVE dataset. 

 

TABLE 4. Comparison with the MoNuSeg [26] dataset's the most recent findings 

 

5. CONCLUSION 

In conclusion, Mini-Net offers a highly efficient and lightweight framework for real-time segmentation 

in medical imaging. Achieving state-of-the-art performance across diverse medical image datasets, it 

demonstrates both effectiveness and efficiency. With only 37,800 parameters, its compact architecture 
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enables deployment on devices with limited memory and processing power. This makes Mini-Net well-

suited for real-time medical applications in resource-constrained environments. Extensive experiments 

validate its strong generalizability across various medical imaging tasks. Its ability to maintain a balance 

between efficiency and performance enhances its practical applicability. The model’s design ensures 

seamless integration into real-time medical imaging workflows. Mini-Net’s adaptability supports its use 

in different clinical and diagnostic scenarios. Its low computational demands facilitate accessibility in 

settings with scarce resources. The framework’s robustness underscores its potential in advancing 

healthcare technologies. By enabling real-time segmentation, Mini-Net enhances medical imaging 

efficiency. Thus, it serves as a transformative tool for improving diagnostic accuracy and healthcare 

outcomes. 
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