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Abstract: This study explores an approach to refining decision- making models using adaptive learning 

methods. By structure data-driven strategies, the research enhances efficiency in complex scenarios. 

Various techniques are examined to improve adaptability and performance, with an emphasis on 

practical applications. The findings highlight key advancements that con- tribute to more effective and 

controlled learning processes. 

1. INTRODUCTON 

This section introduces fundamental concepts in Reinforce- ment Learning (RL), a framework where agents learn 

to make decisions by interacting with an environment. 

 

A. Core Concepts 

Consider a discrete-time system, where at each time step t, the environment is in a state st and the agent selects 

an action at. The agent’s behaviour is determined by a policy πθ, which can be deterministic (at = πθ (st)) or 

stochastic (πθ (at|st)). When states are only partially observable, the policy may depend on observations ot. The 

environment evolves based on a transition function or model, defined as a conditional probability distribution p 

(st+1|st, at). A sequence of states and actions forms a trajectory τ = (s1, a1... sT, at). The agent receives feedback 

through a reward function r(s, a), which can be known or learned (as in Inverse RL). The goal is to maximize the 

expected cumulative reward: 

 

 

 
FIGURE 1. A simple Markov chain. 

 

 

θ = arg max E ∼ "Σ r (st, at) #, 

 
FIGURE 2. Three-step reinforcement learning pipeline. 
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Where the trajectory distribution is: 

P (τ) = p(s) Y π (a |s) p (s|s, a). 

2) Value Function 

The value function estimates the expected future reward   

I often assume the Markov property, where st+1 depends T only on st and at (see Fig. 1). 

V π (st) = Eπ[r (set′, at′) |st], t′=t  

B. Value-Based Functions 

To facilitate policy optimization, two key functions are defined: 

1) Q Function 

The Q-function quantifies the expected future reward from taking action at in state st under policy π: 

T Qπ (st, at) = Eπ[r (st′, at′) |st, at]. t′=t 

With the relation V π (st) = Ea ∼π (•|s) [Qπ (st, at)]. The over- all objective becomes Es ∼p(s) [V π (s1)]. 

C. RL Workflow 

RL involves three key stages: (1) data generation through agent-environment interaction, (2) function 

approximation us- ing collected samples, and (3) policy improvement based on estimated rewards. This loop 

continues iteratively to enhance agent performance (see Fig. 2). 

2. IMITATION LEARNING 

Imitation learning, also known as behavioural cloning, aims to train an agent to replicate expert behaviour from 

demonstrate. The agent is trained to fit a policy π (at|ot) that maps observations to actions. 

 

Distribution Mismatch 

A core challenge is the distribution mismatch between training and test time. Small mistakes can lead the agent 

into unfamiliar states, compounding errors and deviating from the expert trajectory, as illustrated in Fig. 3. 

 

 
FIGURE 3. Compounding errors in behaviour cloning. 

 

Dataset Aggregation (D Agger) 

To mitigate error accumulation, Dataset Aggregation (DAg- ger) [1] iteratively augments the training dataset with 

agent- collected states, relabeled by a human expert. 

 

Algorithm 1 Dataset Aggregation (DAgger)  

1. Require: Expert dataset D = {(oi, ai)} N 

2. while not converged do 

3. Train policy πθ on D 

4. Run πθ to collect observations DP 

5. Reliable DP with expert actions 

6. Aggregate: D ← D ∪ DP 

7. return Final policy πθ 

D Agger aligns the training and test distributions but relies heavily on human supervision, which can introduce 

noise and is not always Markova. 
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Failure Modes of Imitation Learning 

1) Non-Markova Behaviour 

Human decisions often depend on historical context, leading to a mismatch when fitting Markovian policies. One 

approach is to use recurrent neural networks (e.g., LSTM) to encode history, as shown in Fig. 4. However, longer 

histories can introduce causal confusion, where the agent learns spurious correlations. For example, an agent 

might associate braking with a dashboard light rather than an obstacle. 

 
FIGURE 4. Addressing non-Markovian data with RNN. 

2) Multimodal Expert Behavior 

Experts may exhibit multiple valid behaviors in the same state (e.g., avoiding a tree by steering left or right). A 

unimodal policy (e.g., Gaussian) may average actions, leading to unsafe behavior (e.g., going straight into the 

tree). Solutions include using mixtures of Gaussians, latent variable models, or autoregressive discretization. 

 

 
FIGURE 5. Averaging multimodal actions can result in failure. 

 

Theoretical Error Analysis 

Let π∗ be the expert policy and assume the imitation policy πθ has error rate ϵ on training distribution ptrain(s). 

The state distribution under πθ becomes: 
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Pθ (st) = (1 − ϵ) tptrain (st) + (1 − (1 − ϵ) t) pmistake (st) 

The total variation divergence yields: 

|pθ (st) − ptrain(st)| ≤ 2ϵt 

Thus, the expected number of mistakes grows as: 

E [# mistakes 2] ∈ O (ϵT) Imitation learning faces challenges such as distribution 

Mismatch, non-Markovian data, multimodal behaviour, and compounding errors. While DAgger addresses some 

of these issues, it depends on human supervision, which may be noisy or insufficient for certain state-action 

spaces. Future work explores learning from unlabelled or synthetic data to overcome these limitations. 

3. POLICY GRADIENT METHODS 

Reinforcement Learning (RL) can be framed as an optimization problem: 

θ = arg max Eτ∼pθ (τ) "Σ r (st, at) # 

Define the objective function: J(θ) = Eτ ∼πθ(τ )[r(τ )] = ∫ πθ(τ )r(τ ) dτ 

Policy Gradient Theorem 

Using the identity ∇θπθ (τ) = πθ (τ) ∇θ log πθ (τ), I get: 

∇θJ (θ) = Eτ∼πθ (τ) [∇θ log πθ (τ) r (τ)] 

For trajectory τ = (s, a, s, a): 

Log πθ (τ) = log p (s1) +Σ log πθ (at|st) +Σ log p (st+1|st, at) 

Only πθ (at|st) depends on θ, so: 

Θ τ ∼πθ (τ) θ t=1 θ t t t=1 

Monte Carlo Approximation 

Since the expectation is intractable, approximate using Monte Carlo with N samples: 

∇θJ (θ) ≈ N ΣT ∇θ log πθ (ai, t|si, and t)! ΣTR (si,t, ai,t) 

Update policy via gradient ascent: 

Θ ← θ + α∇θJ (θ) 

Example: Gaussian Policy 

For πθ (at|st) = N (fθ (st), Σ): 

Log πθ (at|st) = −2fθ (st) − at   2 + C∇ 

Gradient: ∇ log π (a |s) = −Σ−1 (f (s) − a) dfθ 

Algorithm 2 REINFORCE Algorithm  

 Require: Policy πθ (a|s), learning rate α 

While not converged do 

Sample N trajectories {τi} from πθ 

 

FIGURE 6. Higher-reward trajectories become more probable 

 

Intuition behind Policy Gradient 

Policy gradient increases the probability of high-reward trajectories: 

∇ J (θ) ≈ 1 Σ ∇ log π (τ) r (τ) 
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Compared to Maximum Likelihood: 

Policy gradient assigns more weight to high-reward trajectories, effectively learning to prefer them. 

Policy Gradient in POMDPs 

The policy gradient does not rely on the Markov property. 

In POMDPs, replace states stwith observations ot: 

∇θJ (θ) ≈ Ni=1∇θ log πθ (ai,t|oi,t)t r(oi,t, ai,t) 

Variance Reduction Using Baselines 

Causality 

By causality, actions at time t cannot influence past rewards: 

∇θJ(θ) ≈ N Σ∇θ log πθ(ai,t|si,t) ΣTr(si,t′ , ai,t′ )! i=1 t=1 

This “reward-to-go” reduces variance by excluding irrele- vant past rewards. θ θ  t  t θ  t t  dθ 

Drawback of Naive Policy Gradient 

Naive policy gradient is sensitive to reward scaling. Adding a constant to all rewards shifts their values but 

affects the gradient direction, leading to high variance. Variance-reducing to stabilize learning. 

4. BASELINES IN POLICY GRADIENT 

To reduce variance in policy gradient methods, baselines are introduced—typically the average reward—so that 

only above- average trajectories contribute to learning. Let the baseline be defined as: 

b = 1 Σ r (τ) 

Incorporating this into the policy gradient yields: 

∇ J (θ) ≈ 1 Σ ∇ log π (τ) [r (τ) – b 

5. ACTOR-CRITIC ALGORITHMS 

 In the previous chapter, I derived the policy gradient theorem 

 
where the term Qˆi,t represents the reward-to-go, i.e., the expected cumulative reward from time t onward. While 

this Monte Carlo-based estimate is unbiased, it suffers from high variance. I now explore how actor-critic methods 

improve upon this by leveraging better approximations of Qˆi,t. 

 

Reward-to-Go and Q-Function 

A more precise form of the reward-to-go is the expected return conditioned on a state-action pair: 

 
Replacing Monte Carlo returns with Q (st, at) yields a refined policy gradient estimate: 

 
Variance Reduction with Baselines 

To further reduce variance, I subtract a baseline from Q. A common choice is the value function: 

 
This gives rise to the advantage function, which quantifies the relative value of taking action at in state st: 

 
Substituting this into the policy gradient, I obtain: 
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Approximating the Advantage Function 

To approximate Aπ, I leverage the relation 

 
Which leads to a simple estimator: 

 
Thus, estimating is key to computing efficiently 

 

Policy Evaluation via Value Function Fitting 

To assess how good a policy is, I evaluate its value function: 

 
Practically, I approximate this using Monte Carlo returns: 

 
or over N sampled rollouts: 

 
Even when using single-sample returns, training a neural network to fit these estimates allows for generalization 

across similar states, providing a low-variance, learnable baseline to support actor-critic training 

1) Monte Carlo Evaluation with Function Approximation 

To approximate the value function, I treat it as a supervised learning problem where the target label is the 

cumulative return from a state. Specifically, the training set is {(si,t, yi,t)} 

 

Batch Actor-Critic 

The actor-critic framework reduces variance in policy gra- dient methods by incorporating a value function 

(critic). In the batch version (Alg.??), I sample state-action pairs, fit the value function, compute advantages, and 

update the policy via: 

 

 
 

Discounting for Infinite Horizons 

To prevent unbounded returns in infinite horizon problems, I introduce a discount factor γ ∈ [0, 1]. The 

bootstrapped target while bootstrapped actor-critic estimates reduce variance at the cost of bias. A compromise 

is to truncate the trajectory and compute n-step returns: becomes yi,t= r(si,t, ai,t) + γVˆπ (si,t+1). Discounting 
also affects the policy gradient, where I prefer the form: 

 

as it yields lower variance in practice. I incorporate this into the batch actor-critic in Alg.??.GAE  t tn=1n  t t 

Online Actor-Critic 
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In the online variant (Alg. ??), updates are made per interaction step without storing full trajectories. Using two 

networks for policy and value function (or a shared network), I update the critic with target r + γVˆϕ(s′),  ompute 

the advantage, and update the actor with the resulting gradient. For efficiency, parallel simulations are often 

employed (Fig. ??), though asynchronous setups may result in slightly outdated policies during data collection. 

 

Critics as State-Dependent Baselines 

In Monte Carlo policy gradients, the gradient estimate uses the return minus a baseline to reduce variance, 

maintaining unbiasedness  

 
In contrast, actor-critic methods utilize a learned critic to estimate the advantage function, reducing variance 

at the cost of introducing bias: 

 

To better trade off bias and variance, a common approach is to use the critic as a state-dependent baseline, 

yielding an unbiased yet lower-variance gradient estimator: 

 
Eligibility Traces and n-Step Returns 

Monte Carlo and actor-critic methods reflect a bias-variance tradeoff: Monte Carlo returns are unbiased but 

high-variance, while bootstrapped actor-critic estimates reduce variance at the cost of bias. A compromise is 

to truncate the trajectory and compute n-step returns: 

 
Choosing n > 1 often yields more stable learning. General Advantage Estimation (GAE) further refines this by 

averaging over multiple n-step returns with exponentially decaying weights: 

 
where λ adjusts the tradeoff between bias and variance 

 

6. VALUE FUNCTION METHODS 

An Implicit Policy 

To bypass policy gradients, I can derive actions directly from the advantage function by selecting the action that 

maximizes it: 

 
This yields an implicit, deterministic policy: 
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Though the original policy π is not explicitly used, the resulting policy is guaranteed to be at least as good under 

accurate advantage estimates. 

 

Policy Iteration 

1) High-Level Idea 

Policy iteration repeatedly improves a policy by evaluating and maximizing the advantage function. Since 

advantage be expressed in terms of value functions: 

 
  Approximating V π(s) suffices to guide the policy update. This method omits gradient steps and instead focuses 

on alternating 

2) Dynamic Programming 

Assuming discrete state-action spaces and known transition probabilities p(s′|s, a), I can update the value function 

using the standard dynamic programming (DP) approach: 

 
If the policy π is deterministic, the expectation over actions disappears, yielding a simplified update: 

 
Alternatively, I can update values directly without main- taining an explicit policy. Since arg maxa Aπ(s, a)  = arg 

maxa Qπ(s, a) due to Aπ(s, a) = Qπ(s, a) − V π(s), I use this equivalence in value iteration: 

Algorithm 3 Policy Iteration (DP) 

1. while not converged do 

2. Evaluate V π(s) 

3. Improve policy π ← π′ 

Algorithm 4 Value Iteration (DP) 

1. while not converged do 

2. Q(s, a) ← r(s, a) + γE[V (s′)] 

3. V (s) ← maxa Q(s, a) 

Algorithm 5 Fitted Value Iteration 

1. while not converged do  

2. yi ← maxai (r(si, ai) + γE[Vϕ(s )])  

3. Update ϕ to minimize Σ (Vϕ(si) − yi)2 

Algorithm 6 Fitted Q-Iteration 

1. while not converged do 

2. for K times do  

3. yi ← ri + γ maxa′ Qϕ(s′, a′) 

4. Update ϕ to minimize Σ (Qϕ(si, ai) − yi)2 

Algorithm 7 Online Q-Iteration  

1. while interacting with environment do 

2. Take action ai and observe (si, ai, ri, s′) 

3. yi ← ri + γ maxa′ Qϕ(s′, a′) 

4. Update ϕ ← ϕ − α∇ϕQϕ(si, ai)(Qϕ(si, ai) − yi) 

 

Fitted Value Iteration 

Tabular methods struggle with large state spaces (curse of dimensionality). To address this, I approximate value 

functions with neural networks. The value function is trained to  

 
1) Fitted Q-Iteration 

To avoid relying on transition dynamics, I learn Qϕ directly and approximate Vϕ(s) ≈ maxa Qϕ(s, a). This supports 

off- policy learning and reduces variance, though it lacks convergence guarantees for non-linear approximates. 

The training minimizes the **Bellman Error**: 
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Achieving ϵ = 0 yields the optimal Q-function and policy. However, due to approximation and off-policy 

sampling, convergence is not guaranteed in general. 

 

2) Online Q-Iteration 

Instead of batch learning, I can apply online Q-learning, updating the Q-network with each new sample 

immediately: 

This online, off-policy version enables continual learning with improved sample efficiency but shares the same 

stability concerns with non-linear function approximates 

 

Value Function Learning Theory 

A natural question that arises when exploring value-based methods is whether they converge, and if so, to what. 

To answer this, I introduce the Bellman backup operator B: 

 
Where ra is the reward vector for action a and Ta is the state transition matrix. The fixed point V ∗ of this operator 

satisfies: 

 
This fixed point represents the optimal value function. In the tabular case, value iteration converges to V ∗ since 

B is a contraction under the l∞ norm.  In contrast, the non-tabular case introduces challenges. Fit- ted value 

iteration applies B followed by a projection operator Π onto a function space Ω (e.g., neural networks): 

 
While both B and Π are contractions in their respective norms, their composition is not, thus convergence is not 

guaranteed. Fitted Q-iteration uses the same principle: Q ← ΠBQ, and similarly lacks convergence guarantees 

due to the compound Operator not being a contraction. Moreover, online Q-iteration updates Q using single 

samples and a bootstrapped target dependent on the same network, leading to unstable updates. 

 

Replay Buffers and Target Networks 

To reduce the correlation in sequential samples, replay buffers B store transitions and allow batch sampling for 

up However, the bootstrapped target yi = r + γ maxa′ Qϕ(s , a ) still depends on the current network parameters ϕ, 

leading to biased gradients. To address this, target networks are introduced. A separate parameter set ϕ′ is used to 

compute targets, typically updated to avoid relying on transition dynamics, I learn Qϕ directly and approximate 

Vϕ(s) ≈ maxa Qϕ(s, a). This supports off- policy learning and reduces variance, though it lacks convergence 

guarantees for non-linear approximators. The training minimizes the **Bellman Error**:   

 
Combining both replay buffers and target networks yields the Deep Q-Network (DQN) algorithm, which 

significantly improves stability and convergence in practice. 

  

 

Unifying Q-Learning Variants 

The Q-learning family can be generalized by three pro- cesses: data collection, target computation, and parameter 

updates. In fitted Q-iteration, updates are nested; in online Q-learning, all processes run synchronously; and in 

DQN, target updates occur at a slower pace than data collection and training. This abstraction helps us better 

understand and compare these algorithmic variants. 

 

Inaccuracy in Q-Learning 

Q-values are not necessarily accurate. The reason lies in the target value. Recall that the target value y is defined 

as yj = rj + γ maxa′ Qϕ′ (s′, a′ ). The max operation in the target is the main problem, because for two random 

variables X1 and 

X2, E [max(X1, X2)] ≥ max (E[X1], E[X2]). Therefore, when the next Q-value. 
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Double Q-Learning 

One might notice that maxa′ Qϕ′ (s′, a′)= Qϕ′ (s′, arg maxa′ Qϕ′ (s′, a′)). Thus, if I somehow managed 

to decorrelate the error from the selected action and the error from the Q-function, I could eliminate the erroneous 

overestimation. To achieve this, I can use two different networks 

 

By using the parameters of one network for action selection and the other for value estimation, I decor relate the 

errors, thereby reducing overestimation bias. In practice, I often use the current and target networks as the two 

networks. Instead of setting the target as 

 

I use the current network to select the action and the target network to evaluate its value: 

N-Step Return Estimator 

In the original definition, the target is yi,t = ri,t + Qϕ′ (si,t+1, ai,t+1), which heavily depends on the θ Q-value 

estimate. When the Q-value estimate is poor, learning stalls. To resolve this, I can use the N -step return trick as 

in the actor-critic algorithm. The idea is to leverage the bias- variance trade off by limiting the reward 

accumulation to N steps: 

 

 
However, this introduces an on-policy dependency, as the trajectory of rewards is generated by a specific policy. 

This limits the ability to fully leverage off-policy data. To mitigate this, I can either: 

 Ignore the mismatch (works well in practice), 

 Dynamically adapt N to maintain on-policy data, 

 Use importance sampling to reweight the returns appro- priately, as described by Munos et al. [2]. 

 
Algorithm 8 Deep Deterministic Policy Gradient (DDPG)  

1. while training do 

2. Take action ai, observe transition (si, ai, ri, s′), store in replay buffer B 

3. Sample mini-batch {sj, aj, rj, s′ } from B 

4. Compute target: yj = rj + γQϕ′ (sj, µθ′ (sj )) 

5. Update critic: ϕ ← ϕ − α∇ Σ (Q (s , a ) − y )2 ϕ j j  

6. Update actor: θ ← θ + β Σ ∇ Q (s , µ (s )) 

7. Update target networks 

 

Q-Learning with Continuous Actions 

In Q-learning, the implicit policy is defined as: 

 
However, arg max is intractable for continuous action spaces. To resolve this: 

Option 1: Sample-based Approximation 

Use random sampling over a pre-defined distribution (e.g., uniform) and approximate: 
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This can be improved with techniques like the Cross-Entropy Method (CEM). 

Option 2: Structured Q-function 

Use a Q-function that is easy to optimize analytically. One such method is the Normalized Advantage Functions 

(NAF) proposed by Gu et al. [3]. 

Option 3: Learn an Argmax-er (DDPG) 

Train a separate actor network µθ(s) to approximate the action that maximizes the Q-value: 

 
The optimization becomes: 

 
The target becomes: 

 
4) A Simple ϵ Bound 

Assume that πθ is deterministic, i.e., at = πθ(st). From imitation learning, I say πθ′ is ϵ-close to πθ if 

 
Then, the new policy’s state marginal is given by: 

 
I can bound the mismatch in state distributions as: 

 
This bound is not tight but provides a first-order approximation. Now consider a more general (possibly stochastic) 

policy πθ. I define closeness as: 

 
I use the following lemma: if |pX (x) − pY (x)| = ϵ, then there exists a joint distribution p(x, y) such that p(x) = 

pX (x), p(y) = pY (y), and p(x = y) = 1 − ϵ. Applying this to πθ and πθ′ , I conclude that the probability they choose 

different actions is bounded by ϵ. Thus, the same  

 
Now, for any function f (st), I can write: 

 
Now apply this to the policy improvement objective: 
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A More Convenient Bound - KL Divergence 

A tighter and more convenient constraint is provided by KL divergence. Using Pinsker’s inequality: 

 
I define 

 
Thus, the update becomes: 

 
subject to 

 
Can incorporate the constraint using a Lagrangian: 

 
I then alternate between: 

 Maximizing L with respect to θ′ (e.g., via gradient ascent), 

 Updating λ via: λ ← λ + α(DKL − ϵ). This method is known as dual gradient descent. 

 

First-Order Optimization via Taylor Expansion 

 
From policy gradients: 
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This leads to: 

 
Contrast this with the standard gradient ascent step: 

 
whose solution is: 

 
This enforces a spherical constraint in parameter space,     rather than in policy space, which is not ideal. I aim 

reflects the policy mismatch. 

 

 
FIGURE 8. Dyna: synthetic rollouts from past states 

short rollouts provide additional training data. The generalized Dyna algorithm is shown in Algorithm 10. Short 

synthetic rollouts minimize error accumulation while enhancing sample efficiency by reusing past states for 

training  

 

Local and Global Models 

In the context of LQR, a constrained control optimization problem can be reformulated into an unconstrained one, 

al- lowing us to minimize cumulative cost terms of the form: 

 
with each xt+1 = f (xt, ut). Solving this via backpropagation requires computing gradients of both the dynamics 

and cost functions with respect to state and control inputs. For complex systems, exact models are unavailable, so 

local approximations are used. By linearizing the nonlinear dynamics around a nominal trajectory, I obtain a local 

model where f (xt, ut) ≈ Atxt + Btut. These Jacobians, At = df and Bt = df , are estimated using samples from the 

system. 

 

Local Models 

Local models exploit LQR’s structure by iteratively updat- ing a linear approximation around the current 

trajectory. If the true dynamics are stochastic and modeled as p(xt+1|xt, ut) = N (f (xt, ut), Σ), the system can still 

be approximated linearly within each iteration of iLQR. The resulting feedback control 

law is given by: 
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where xˆt, uˆt, Kt, and kt are outputs of the iLQR optimization. To introduce variability and avoid deterministic 

rollouts, I can inject Gaussian noise into the controller, yielding p(ut|xt) = N (Kt(xt − xˆt) + kt + uˆt, Σt), where Σt 

is often set to Q−1 . This approach allows for robust exploration during training. short rollouts provide additional 

training data. The generalized Dyna algorithm is shown in Algorithm 10. Short synthetic rollouts minimize error 

accumulation while enhancing sample efficiency by reusing past states for training. 

 

LLocal and Global Models 

In the context of LQR, a constrained control optimization problem can be reformulated into an unconstrained one, 

al- lowing us to minimize cumulative cost terms of the form: Dynamics can be modeled through Bayesian linear 

regres- sion, enabling uncertainty quantification. To maintain policy stability, the updated controller must remain 

close to previous ones. This is enforced by constraining the divergence be- tween trajectory distributions: DKL(p(τ 

)   p(τ¯)) ≤ ϵ, ensuring smooth transitions across policy updates. 

 

Guided Policy Search 

Guided Policy Search (GPS) bridges local optimal control with global policy learning. The key idea is to use 

optimized local controllers (e.g., LQR policies) to generate trajectories, which serve as supervised data for training 

a global policy, typically a neural network. Since a single global policy may not fully capture the behaviors of all 

local controllers, GPS iteratively refines the local policies while encouraging align- ment with the global policy 

πθ. This is done by modifying the cost to include a regularization term: 

 
which penalizes deviations from the global policy. The overall process is illustrated in Algorithm 11. Over time, 

both local and global policies are co-optimized to ensure consistency and performance. 

 

Distillation 

To efficiently generalize across tasks, reinforcement learning borrows the concept of knowledge distillation from 

supervised learning [4]. Instead of retaining a collection of specialized models, a single global model is trained to 

mimic the collective output of an ensemble by learning from their soft probability distributions. The soft targets 

are produced using: 

 
where T is a temperature parameter that smooths the output logits. In RL, this translates to policy distillation, 

where the global policy πAMN (a|s) is trained to match the behavior of multiple local expert policies πEi (a|s). 

The loss function is: 

 
which enables the distilled policy to generalize across tasks efficiently. This strategy is foundational for scalable, 

multi- task RL and has been explored in works like [5], [6]. Similar ideas are also leveraged in Divide-and-

Conquer RL, where the role of local LQR controllers is replaced with task-specific neural policies. 

 

Combining Imitation and Reinforcement Learning 

Imitation learning offers sample efficiency and stability but is limited by demonstration quality. Reinforcement 

learning can surpass demonstrations but suffers from exploration chal- lenges. A hybrid approach—pretraining a 

policy on demon- strations and fine-tuning with reinforcement learning—strikes a balance. However, care must 

be taken to avoid poor initial trajectories due to distribution shift. 

 

Off-policy Reinforcement Learning 

To prevent forgetting demonstrations during training, off- policy RL methods are advantageous, as they allow 

learning from any data source, including demonstrations reused across iterations. This approach maintains 

exposure to demonstration data while enabling the learned policy to outperform them, as it is not constrained to 

imitation. One strategy is to employ off-policy policy gradients, which use importance sampling to adjust for the 

mismatch between the behavior and target policies: 
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While policy gradients typically rely on on-policy data, importance sampling enables the use of off-policy data—

such as demonstrations—by reweighting trajectories. The optimal importance sampling distribution for estimating 

Ep(x)[f (x)] minimizes variance when q(x) ∝ p(x)|f (x)|, suggesting that high-reward demonstrations bring us 

closer to this ideal. To model q(x), I can train a behavioral cloning policy πdemo, or if demonstrations come from 

multiple sources, define a fusion distribution: 

 

 
Q-learning with Demonstrations 

Since Q-learning is inherently off-policy, it can directly benefit from demonstrations without importance 

weighting. A practical method is to initialize the replay buffer with demon- stration data and proceed with standard 

Q-learning updates. This simple augmentation often yields improved performance, especially in sparse reward 

settings. 

 

Imitation as Auxiliary Loss 

Imitation learning maximizes the log-likelihood of expert actions: 

 
To integrate this with reinforcement learning, a hybrid objective is used: 

 
This formulation encourages the agent to imitate expert be- havior while still optimizing for long-term rewards. 

 

 

Offline reinforcement learning 

Unlike traditional RL, which relies on active environment interaction, offline RL aims to learn policies from static 

datasets—useful in scenarios where data collection is risky or costly, such as autonomous driving. Interestingly, 

offline RL can sometimes exceed the quality of its dataset by stitching together successful sub-trajectories. For 

example, Q-learning can converge to an optimal policy even from randomly col- lected data. 
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