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Abstract:  SRAM cells play a critical role in memory components such as caches, register files, and translation 

lookaside buffers, with their design needing to meet specific requirements based on their intended use. In the 

aerospace sector, where power efficiency and reliability are paramount due to constrained power resources 

and exposure to high radiation, the Nwise cell, designed with 28nm FD-SOI technology, addresses these 

challenges by providing strong reliability and resistance to radiation. This research also presents the Pwise 

cell, a novel design derived from the Nwise cell and utilizing the same 28nm FD-SOI technology. Simulations 

indicate that both the Nwise and Pwise cells offer excellent protection against single-event upsets (SEUs) and 

multiple-event upsets (MEUs) in space environments. The Pwise cell, with its lower read and write latencies, 

is well-suited for log file applications, while the Nwise cell, with lower read latency and reduced power 

consumption, is ideal for cache memory designs. Both cells present promising options for space-grade memory 

systems. 

 

Index Terms: 28nm FD-SOI technology, cells with Nwise and Pwise configurations, enhanced radiation 

resistance, durability, multiple-event upsets (MEUs), single-event upsets (SEUs), susceptibility to soft errors, 

space-focused applications, and the design of SRAM cells. 

 

1. INTRODUCTION 

SRAM cells are fundamental elements in cache memories, register files, and translation lookaside buffers (TLBs), 

which are integral to the operation of digital processing systems. The performance, dependability, and energy 

efficiency of these cells have a significant impact on CPU architecture. In the context of aerospace electronics, SRAM 

cells encounter particular challenges due to exposure to high radiation and the demand for low power consumption. 

SEUs occur when a charged particle disturbs the data stored in a cell, while MEUs affect multiple nodes at once, 

potentially leading to system failures. To mitigate these threats, designing radiation-resistant SRAM cells that maintain 

low latency and power consumption is essential. With the ongoing miniaturization of transistors, ensuring the 

reliability of these cells becomes increasingly difficult, as smaller transistors are more prone to radiation-induced 

errors. This challenge has prompted researchers to investigate alternative technologies, such as FD-SOI, which offers 

better electrostatic control, improved carrier mobility, and reduced leakage current compared to traditional bulk CMOS 

technology. FD-SOI has demonstrated its effectiveness in minimizing radiation-related damage to SRAM cells, 

making it particularly suitable for space and aerospace applications. The first section addresses SEU injection 

modeling in memory cells, the second explores the benefits of FD-SOI over bulk CMOS, and the final section reviews 

various circuit-level and architectural approaches aimed at enhancing memory system resilience. 
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This equation shows that the total charge deposited on the tip, represented as Qdep, results from particle impact in a 

transient double-layer current source, where τf is the ion-track creation time constant. These time constants are specific 

to the selected material  

 
FIGURE 1. Equivalent circuit models designed to simulate (a) noise with a negative injection and (b) noise with a 

positive injection. 

FD-SOI technology improves transistor efficiency by reducing leakage currents and parasitic capacitance, achieved 

by using a narrow, undoped silicon channel. Though costlier to produce, it offers significant benefits in energy 

efficiency and radiation resistance, which makes it particularly useful for space-based applications. This research 

compares different SRAM cells' resistance to radiation, especially under Single Event Upset (SEU) and Multiple Event 

Upset (MEU) conditions. While traditional designs such as DICE offer strong resilience, they demand larger areas and 

higher power. On the other hand, the Nwise and Pwise 10T SRAM cells, utilizing 28nm FD-SOI, present a more 

compact, energy-efficient alternative with reliable recovery from SEU and MEU, making them ideal for use in 

radiation-sensitive environments, particularly in cache memory. 

 
FIGURE 2. The circuit structure of (a) the Nwise cell [55] and (b) the new proposed Pwise cell. 
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FIGURE 3. The simulation waveform of Nwise cell for a sequential set of operations Write 1, Read 1, Write 0, Read 

 
FIGURE 4. SEU tolerance simulation of N wise cell. 

When a 1→0 Single Event Upset (SEU) occurs at node Q, transistors N2 and N4 turn off, resulting in floating nodes 

P and QB. However, this does not affect the stored information, as node PB remains intact. Transistor P1 re-establishes 

node Q’s previous state. Similarly, a 0→1 SEU at node QB is promptly corrected as transistor N2 discharges the node. 

A 1→0 SEU on node P doesn’t impact node PB, ensuring stability. Simulation results confirm that the Nwise cell 

effectively recovers from SEUs, ensuring data preservation during particle strikes regardless of the SEU’s polarity. 
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FIGURE 5. SEU tolerance simulation of Pwise cell. 

 

 

In simulation results are presented for multiple event upset (MEU) tolerance in the Nwise cell, highlighting the behavior of 

nodes P, Q, and QB under the influence of simultaneous charged particle impacts. As PB remains insensitive, its interactions 

with other nodes behave similarly to single-event upsets (SEUs). The results demonstrate that the Nwise cell is capable of 

recovering from multiple impacts on Q, P, and QB within a short time frame, achieving full recovery after each event. At 

46ns, simultaneous 1→0 transitions on Q and P lead to recovery, while at 53ns, impacts on QB and P also allow the cell to 

restore itself. MEUs involving more than two nodes show minimal state changes due to charge diffusion. Moreover, SOI 

technology enhances MEU resilience by restricting charge collection and coupling. Figure 9 further confirms the similar 

recovery observed in the Pwise cell, reinforcing the MEU tolerance of both designs. 

 

 
FIGURE 6. MEU tolerance simulation of Nwise cell. 
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2. DESIGN METHODOLOGY AND SIMULATION RESULTS 

 

To evaluate the performance of the Nwise and Pwise SRAM cells, we conduct a comparison with a range of radiation-

hardened designs, such as the 6T SRAM, Quattro, RHBD, NS and PS stacked cells, and the high-speed 10T QUCCE 

cell. A simulation of a 64-cell SRAM column array is performed under realistic cache memory conditions, 

incorporating peripheral circuits and signal drivers for a precise assessment. The optimization aims at enhancing 

robustness, minimizing power consumption, reducing latency, and shrinking area. Transistor dimensions are manually 

optimized for the best configuration, with layouts created using Cadence Virtuoso and a 28nm FD-SOI process. The 

simulations deliver key performance metrics, including power usage, latency, noise margins, and area. 

 

FIGURE 7. The circuit structure of the SRAM_6T cell. 

 

 

FIGURE 8. Layout view of Nwise cell design. 

 
FIGURE 9. Read delay comparisons between all considered cells. 
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FIGURE 10. Write delay comparisons between all considered cells. 

The comparison of access times reveals that the RHBD cell experiences the longest read latency, roughly four times 

longer than Nwise and nearly three times that of Pwise. This extended latency is due to the multiple activations of 

PMOS. On the other hand, Nwise suffers from the highest write latency because of feedback overhead. Meanwhile, 

Pwise strikes a balance, offering superior performance and better SEU tolerance compared to RHBD and Quattro. 

 
FIGURE 11. WSNM comparisons between all considered cells 

. 

 
FIGURE 12. Area comparisons between all considered cells. 
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TABLE 1. Transistor sizes of all tested cells. 

  

 
 

 
 

 
 

       

 
 

   

  
 

 

 
 

 
 

        

 

 

TABLE 2. Cost comparisons for all tested cells. 

 

  
  

   
 

 

 

 

          

          

          
          
          

          

          

          

 

 
FIGURE 13. Minimum critical charge all considered cells. 

The minimum critical charge (Qcrit) across different SRAM cell designs within the temperature range of -55°C to 

+125°C, typical for aerospace applications. Among the designs evaluated, the Nwise, Quatro, and Pwise cells exhibit 

the highest Qcrit values at both low and high temperatures. The temperature-dependent variation in Qcrit is 0.15 fF 

for Nwise, 0.16 fF for Quatro, and 0.62 fF for Pwise. However, the Quatro design is unsuitable for extreme 

environments, as it fails to provide full protection against single-event upsets (SEUs). As a result, both Nwise and 

Pwise cells retain the highest Qcrit values throughout the temperature spectrum, offering superior resistance to 

multiple-event upsets (MEUs) compared to the other configurations. 
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3. DISCUSSION 

I notice you've sent an incomplete sentence. You mentioned "Table 2 presents a cost comparison of the evaluated 

SRAM cells. The Nwise" but didn't complete the thought and Pwise designs feature the highest critical node 

capacitances, which directly increases their cost. These elevated capacitances result from the transistors in their 

feedback circuits that enhance radiation resilience, as detailed in Section IV-A5. Although Quattro lacks complete 

SEU immunity, it shows comparable costs to the Nwise and Pwise cells. Both Nwise and Pwise incorporate two pairs 

of cross-coupled transistors (NMOS and PMOS) along with feedback pathways that increase capacitance. The cost 

variations between these cells are influenced by transistor dimensions; specifically, the Nwise cell's additional 

feedback transistors contribute to its longer writing delay. 

4. CONCLUSION 

The Poise cell represents an advanced radiation-hardened SRAM design implemented in 28nm FD-SOI technology, 

building upon principles from our previously introduced Noise cell. Our research includes comprehensive simulation 

analysis comparing Nowise and Poise cells against other radiation-hardened SRAM designs intended for space 

application memory systems. These designs exhibit excellent resilience against single-event upsets (SEUs) and show 

strong tolerance to multiple-event upsets (MEUs) across the temperature variations commonly encountered in space. 

The Noise cell stands out with its lower read delay and reduced power consumption when compared to other designs 

with similar radiation resistance, positioning it as an ideal candidate for cache memory implementations Meanwhile, 

the Pwise cell's minimal read and write latencies make it more appropriate for register file implementations. 
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