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Abstract: The increasing need for energy, alongside the diminishing resources of non-renewable fossil
fuels and environmental worries, has spurred the exploration of sustainable alternatives such as biofuels.
Waste cooking oil (WCO) has emerged as a promising source for making biodiesel, providing a renewable
and environmentally friendly energy option while addressing waste management issues. This research offers
a thorough statistical examination of biofuel production from WCO, covering various factors including
biofuel output, ester content, acid level, flash point, cetane number, density, viscosity, calorific value,
CO2 reduction, energy usage, production expenses, and profit margins. The analysis employs descriptive
statistics, correlation studies, regression models, and ANOVA to clarify the connections between these
variables and their influence on production effectiveness, fuel quality, environmental sustainability, and
economic feasibility. The findings demonstrate strong correlations between biofuel yield and parameters
such as ester content, flash point, cetane number, and calorific value, highlighting their interdependence
in optimising fuel properties. Negative correlations were identified between biofuel yield and factors like
glycerol yield, acid value, and production cost, indicating potential trade-offs in process optimisation.
Regression models and ANOVA analyses confirmed the statistical significance of the independent variables
in explaining the observed variance in biofuel production parameters. The study emphasises the importance
of statistical tools like SPSS for conducting rigorous data analysis and facilitating informed decision-making.
The insights obtained from this research can guide process optimisation, fuel quality improvement, and
economic viability assessments, ultimately promoting the widespread adoption of biofuels derived from
WCO as a sustainable and environmentally friendly energy source.

Keywords: Biofuel, Waste cooking oil, Statistical analysis, Process optimization, Fuel quality and
Economic viability.

1. INTRODUCTION

The ongoing growth of the global population is fuelling a swift escalation in the need for energy, with forecasts
suggesting a notable 53% surge by 2030 in contrast to levels recorded in 2001. This upsurge in demand coincides
with the rapid depletion of non-renewable fossil fuels like coal, oil, and gas. These finite resources are anticipated
to endure for approximately another 200, 40, and 70 years respectively, based on present rates of consumption.
Nonetheless, the combustion of fossil fuels in vital sectors such as transportation, manufacturing, and electricity
generation is exacerbating environmental concerns such as carbon emissions and the broader issue of global
climate change [1]. In light of these challenges, there’s an increasing imperative to investigate alternative, more
environmentally friendly energy sources. Solar, wind, nuclear, hydro, and biofuels have emerged as potential
alternatives. Among these options, biofuels, such as biodiesel, show potential as renewable energy sources with
reduced carbon emissions. Biodiesel, especially when produced from non-edible feedstocks, offers a feasible
substitute for traditional diesel fuel [2]. The upsurge in fossil fuel usage propelled by economic globalization,
population expansion, and industrialization has played a part in greenhouse gas emissions and notable carbon
accumulation in the atmosphere, resulting in global climate change. To tackle these issues and bolster energy
security, countries are progressively broadening their energy portfolios. Biofuels, sourced from sustainable origins
with appropriate chemical attributes, have emerged as a practical substitute for fossil fuels [3]. Concerns about
food security have arisen with first-generation biofuels, which are derived from edible oils, prompting the energy
industry to seek alternative fuel sources. The second generation of biofuels prioritizes the use of residual biomass
and waste, including waste cooking oil (WCO). WCO, obtained from cooking processes, contains accumulated
free fatty acids, rendering it a technically feasible feedstock for biofuel conversion. Its widespread availability
and affordability, sourced from various establishments such as restaurants, food processing industries, fast-food
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outlets, and households, render it an appealing option [4]. Waste cooking oil (WCO), sourced from households,
restaurants, hotels, and food processing enterprises, plays a notable role in global biodiesel production, comprising
around 10% of the total output. Despite being abundant and cost-effective, converting WCO into biodiesel poses
economic challenges due to its elevated free fatty acid levels. Moreover, technical hurdles such as shortages of
raw feedstock and collection complexities impede its widespread adoption. Thus, the recycling of WCO into
potential renewable resources and advancements in conversion technology are crucial [5]. Data from various
countries underscore the scale of waste cooking oil (WCO) production, with estimates indicating substantial
volumes generated each year. In Canada, annual WCO production is estimated at around 135,000 tons, while in the
UK and European Union countries, figures range from 200,000 to 1,000,000 tons per year. The situation is even
more pronounced in Asia, where approximately 5.5 million tons of WCO are produced annually, with Thailand
alone disposing of 117,000 tons per year without proper treatment. Such significant quantities of WCO present
challenges concerning collection, treatment, and disposal, emphasising the pressing need for sustainable solutions
[6]. Recent research has delved into the utilisation of diverse ash materials, including peanut shell ash, coal fly
ash, and banana peel ash, as catalysts for biodiesel production. These materials demonstrate catalytic activity
and present a sustainable method for waste utilisation. Expanding upon prior investigations, this study delves
into the potential of wheat shell ash and water scale as sources of calcium oxide for biodiesel production. The
objective is to refine reaction conditions utilising methanol and waste cooking oil (WCO) as reactants [7]. Biofuels,
including biodiesel and bioethanol, present promising alternatives for reducing carbon emissions in the transport
industry. Biodiesel, in particular, is highly regarded as a replacement for petroleum diesel, constituting nearly 80%
of total biofuel production in the EU. Biodiesel sourced from used cooking oil (UCO) or waste cooking oil (WCO)
represents a second-generation biofuel, derived from non-crop feedstock, and demonstrates potential in terms of
quality and production cost [8]. In nations like Greece, where there’s an abundance of used cooking oil (UCO)
owing to high vegetable oil consumption, recycling UCO into biodiesel offers a sustainable resolution to waste
management and energy requirements. Nonetheless, the improper disposal of UCO into sewage systems poses
notable environmental and economic hurdles, including water contamination and escalated costs for wastewater
treatment facilities. Recycling UCO into biodiesel emerges as a viable strategy for its sustainable management,
mitigating environmental repercussions and bolstering energy security [9]. India, as one of the largest consumers
of cooking oil worldwide, generates a considerable volume of waste cooking oil each year. Biodiesel production
from this waste not only tackles the challenge of waste disposal but also fosters the notion of ”waste to wealth” and
facilitates intelligent waste management practices. Through coordinated initiatives, India stands poised to recover a
substantial amount of waste cooking oil for biodiesel production, thereby advancing its energy security objectives
[10]. The economic feasibility of biodiesel production can be significantly bolstered by employing efficient
heterogeneous catalysts, which provide benefits like recyclability and diminished environmental footprint compared
to homogeneous catalysts. Numerous studies have highlighted the effectiveness of heterogeneous catalysts, such
as barium oxide (BaO) supported on various substrates, in transesterification reactions for biodiesel production.
Furthermore, catalysts supported by tin oxide (SnO2) have exhibited promising catalytic activity, rendering them
suitable options for synthesising biodiesel from waste cooking oil [11]. Non-edible oils, such as jatropha oil, castor
oil, and waste cooking oil (WCO), are attracting increasing interest as biodiesel feedstocks. WCO, in particular, is
promising because of its affordability, avoidance of competition with edible oils, and its ability to mitigate disposal
challenges. Life Cycle Assessment (LCA) studies have demonstrated the environmental benefits of utilising
WCO for biodiesel production, stimulating further investigation into its economic feasibility [12]. Assessing the
economic viability of WCO biodiesel production entails examining factors like catalyst expenses and process
streamlining. While homogeneous catalysts are prevalent, there’s a burgeoning interest in CaO-based catalysts
due to their simplicity and robust catalytic performance. Simulation tools like Aspen Plus play a pivotal role in
refining biodiesel production processes and evaluating technical feasibility [13]. Response Surface Methodology
(RSM) has become an invaluable tool for fine-tuning biodiesel production parameters, assisting in the maximisation
of yield while minimising operating costs. Numerous studies have showcased the efficacy of RSM in optimising
process parameters and ensuring biodiesel quality meets fuel standards. Additionally, research endeavours have
explored the kinetics and thermodynamics of biodiesel production from WCO, emphasising its potential to lower
production expenses compared to alternative feedstocks. The integration of RSM with the desirability function
approach presents a novel methodology for optimising biodiesel production and deepening comprehension of
reaction mechanisms and dynamics [14]. Waste biomass sourced from diverse outlets such as agriculture, sewage,
and mining, notably residues from the iron and steel industry, offers plentiful resources for catalyst production.
Employing agricultural waste, such as rice straw, for catalyst synthesis not only repurposes materials that would
otherwise be discarded but also tackles environmental issues linked to their disposal. The trend towards solid acid
catalysts, derived from carbon-based sources like sulfonated cellulose or glucose, underscores a preference for
reusable and environmentally benign alternatives to liquid acids [15]. In biodiesel production, the selection of
catalyst is contingent upon the free fatty acid (FFA) content of the feedstock. Alkaline catalysts are suitable for
low FFA content, but high FFA content requires alternative catalysts to prevent saponification. Enzyme catalysts
provide a non-polluting option but are often economically prohibitive. Concentrated sulfuric acid can catalyze both
esterification and transesterification processes, yet it poses challenges like equipment corrosion and wastewater
generation, underscoring the demand for heterogeneous acid catalysts [16]. Waste cooking oil (WCO) has emerged
as an economically feasible feedstock for biodiesel production, helping to alleviate environmental risks linked with
improper disposal. Through the repurposing of WCO, environmental pollution can be mitigated, thereby benefiting
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human health and aquatic ecosystems, while simultaneously lowering the expenses associated with waste treatment
[17].

2. METHODOLOGY

Statistical software plays a pivotal role as an analytical tool, ensuring precise data analysis and error prevention.
Researchers must align their choice of statistical software with their research objectives. SPSS, or Statistical
Package for the Social Sciences, is a widely utilised software among researchers for statistical data analysis
[18]. SPSS provides a wide array of analysis capabilities, encompassing data transformation, regression analysis,
analysis of variance, multivariate analysis, t-tests, time series analysis, design and analysis of experiments, among
others. Its versatility enables researchers to perform both parametric and non-parametric comparison analyses
effortlessly. Furthermore, SPSS facilitates the verification of test assumptions and enables precise frequency
analysis [19]. With SPSS, researchers can confidently delve into their data, conduct a myriad of statistical analyses,
and extract meaningful insights to bolster their research objectives. Its user-friendly interface and comprehensive
analytical capabilities render SPSS an invaluable tool in the research community, facilitating the execution of
rigorous and dependable statistical analyses [20]. SPSS, or Statistical Package for the Social Sciences, stands as
a versatile application employed for an extensive spectrum of statistical analysis tasks, encompassing advanced
statistical analysis, machine learning algorithms, string analysis, and big data analysis. Serving as a comprehensive
data analysis platform, it aids researchers in organising and scrutinising data in accordance with established
methodologies. With its 25th version introduced in 2019, SPSS continues to maintain its position as one of the most
extensively utilised software for quantitative research [21]. In the field of education, SPSS finds extensive use in
numerous research studies aimed at analysing data and deriving insights. For instance, research conducted by ebjan,
U., & Tominc, P. (2015) delves into the impact of teacher support and conformity with learning needs on students’
utilisation of SPSS. Similarly, Murtiningsih, M., Kristiawan, M., & Lian, B. (2019) explore the correlation between
principal supervision and interpersonal communication with teacher work ethic. Other studies, such as those by
Espelage, DL, Polanin, JR, & Low, SK (2014) and Chong, W. H., Klassen, R. M., Huan, V. S., Wong, I., & Kates,
A. D. (2010), investigate various facets of education utilising SPSS for data analysis [22]. The integration of SPSS
(Statistical Product and Service Solution) into data analysis has become increasingly widespread, providing access
to diverse data types and functioning as a sophisticated spreadsheet software. Recognised for its utility in data
analysis, mathematics, statistics, and data visualisation, SPSS plays a pivotal role in comprehending mathematical
concepts and conducting research in mathematics education. Its adaptability and advanced capabilities in data
management render it invaluable for both educators and students [23]. SPSS software emerges as a viable tool
for swiftly and accurately processing statistical data, providing diverse outputs crucial for decision-makers. By
utilising SPSS software, students can enhance their comprehension of the material and streamline statistical data
analysis, while also developing their skills in SPSS usage. Furthermore, the chosen learning model to facilitate
student knowledge-building is the TPS (Think-Pair-Share) cooperative learning model. In this model, students
collaborate in pairs within their teams, initially reflecting on individual answers to posed questions before engaging
in group discussions and sharing their insights with other teams. Through this process, students actively participate
in knowledge construction and exchange, fostering a deeper understanding of the subject matter [24]. To optimally
utilise SPSS for data processing and analysis, it’s crucial to prepare the data beforehand. SPSS for Windows
operates through six types of windows: the SPSS Data Editor, Output Window, Syntax Window, Chart Carousel,
Chart Window, and Help Window. Each window serves distinct functions, ranging from entering and manipulating
data to generating outputs and visualisations, as well as offering assistance and guidance throughout the analytical
process [25]. The existing SPSS macros offer limited functionalities for conducting analyses, primarily centred on
main analyses such as mean effect size, subgroup analyses, and meta-regression. However, they lack features for
addressing publication bias and providing graphical options like forest plots and funnel plots. Additionally, utilising
SPSS macros necessitates researchers to write SPSS syntax, which can prove cumbersome for many practitioners.
IBM SPSS recently introduced a point-and-click meta-analysis menu with Version 28, catering to the preferences
of researchers accustomed to using SPSS. Despite the availability of other programs in the literature, SPSS remains
a popular choice. However, until now, there hasn’t been a study specifically focusing on conducting meta-analysis
using IBM SPSS [26]. IBM SPSS Statistics Version 28 provides the necessary functionalities for conducting most
analyses required in meta-analysis studies. The trial version can be downloaded from the official website, and after
registration, users can obtain an IBMid and code to set up the software. The trial period lasts for 30 days, after
which users may choose to purchase the full version. Whether using the trial or full version of SPSS 28, researchers
have access to procedures for calculating mean effect size, heterogeneity statistics, assessing publication bias, and
conducting moderator analyses [27]. In the domain of biofuel production, several input parameters profoundly
influence the process’s outcome and efficiency. Oil quality parameters, such as Free Fatty Acid (FFA) content,
moisture content, and viscosity, are pivotal, affecting the oil’s suitability for transesterification. Higher FFA content
may require more catalyst, while excess moisture can lead to undesirable soap formation, ultimately reducing
yield. Viscosity, indicating oil flow properties, directly impacts processing efficiency. Catalyst parameters also
demand attention, as the type and concentration of catalyst employed influence reaction kinetics and product
purity. Various catalysts, ranging from NaOH and KOH to enzymes, exhibit different effects on reaction rates and
yields. The concentration of catalyst relative to the oil weight further dictates reaction efficiency and the purity
of the resulting biofuel. Reaction conditions, encompassing temperature, duration, and methanol-to-oil molar
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ratio, intricately shape transesterification outcomes. Temperature governs reaction rates and conversion efficiency,
while reaction time determines reactant contact duration, impacting yield. The methanol-to-oil ratio influences
reaction completeness and glycerol separation, a crucial byproduct. Pre-treatment methods, such as filtration and
degumming processes, are essential for impurity removal and phospholipid elimination, respectively. The selection
of cooking oil as the primary source adds complexity, as different oils have diverse compositions and properties,
ultimately affecting the final biofuel quality. In assessing biofuel production efficacy, various evaluation parameters
are considered. Yield parameters, encompassing biofuel yield and glycerol byproduct yield, provide insights into
process efficiency and resource utilisation. Fuel quality parameters, including ester content, acid value, flash point,
and cetane number, offer crucial information on product purity, safety, and combustion properties. Moreover,
physical and chemical properties like density, viscosity, and calorific value influence energy content, combustion
characteristics, and operational feasibility. Environmental impact indicators, such as CO2 emissions reduction and
energy consumption during production, evaluate sustainability and eco-friendliness. Lastly, economic factors like
production cost per litre and profit margin assess financial viability and competitiveness.

3. ANALYSIS AND DISCUSSION

TABLE 1. Reliability Statistics
Cronbach’s Alpha N of Items
.757 13

Table 1 shows that the reliability of the 13-item scale was assessed using Cronbach’s Alpha, resulting in a
coefficient of 0.757. This indicates a satisfactory level of internal consistency, suggesting that the items on the scale
are relatively homogeneous and measure the same underlying construct. In social sciences, a Cronbach’s Alpha
above 0.7 is generally considered acceptable, implying that the scale is reliable for research purposes. This result
suggests that the 13 items are well-suited to be used together in a single scale, providing dependable and consistent
results when applied to the same sample under similar conditions.

TABLE 2. Descriptives Statistics
N Range Minimum Maximum Sum Variance Skewness Kurtosis

Biofuel Yield (%) 50 10.5 78.5 89 4191.5 11.557 -0.136 -1.327
Glycerol Yield (%) 50 4.2 8.5 12.7 530.9 1.713 0.09 -1.266
Ester Content (%) 50 3 94 98 4808 1.165 -0.075 -1.352
Acid Value (mg KOH/g) 50 0.4 0.3 0.7 25.5 0.013 0.151 -0.709
Flash Point (°C) 50 9 154 163 7925 8.622 -0.244 -1.317
Cetane Number 50 9 50 59 2712 8.839 -0.093 -1.308
Density (g/cm³) 50 0.05 0.84 0.89 43.25 0 0.191 -1.209
Viscosity (mm²/s) 50 0.6 4.2 4.8 226.2 0.034 -0.044 -1.09
Calorific Value (MJ/kg) 50 2 38 40 1961 0.37 0.092 -1.366
CO2 Reduction (%) 50 6 67 73 3481 3.22 0.094 -0.99
Energy Consumption (kWh) 50 1 2 2 104 0.059 0.443 -0.912
Production Cost (currency/unit) 50 0.13 0.7 0.83 38.07 0.002 -0.025 -1.162
Profit Margin (%) 50 6 15 21 906 3.7 -0.285 -1.136
Valid N (listwise) 50

The descriptive statistics for 50 samples across various biofuel production parameters reveal notable insights in
table 2. The biofuel yield ranges from 78.5% to 89%, with a total sum of 4191.5 and a variance of 11.557, indicating
moderate variability. The skewness of -0.136 points to a slight left skew. Glycerol yield spans from 8.5% to 12.7%,
with a sum of 530.9 and a variance of 1.713, showing slight positive skewness (0.09). Ester content, an essential
quality measure, ranges from 94% to 98%, with minimal variability (variance 1.165) and slight negative skewness
(-0.075). The acid value ranges from 0.3 to 0.7 mg KOH/g, with a variance of 0.013 and slight positive skewness
(0.151). Flash point and cetane number show negative skewness, indicating that most values are higher within
their ranges. Density, viscosity, and calorific value exhibit low variance and slight negative skewness, indicating
consistency. CO2 reduction and energy consumption have minor positive skewness, suggesting a few higher values.
Production cost and profit margin display minimal skewness and variance, indicating stability in financial metrics.

The frequency statistics for various biofuel production parameters offer detailed insights into their distribution
in table 3. The average biofuel yield is 83.83%, with a standard deviation of 3.3996%, indicating some variability.
The median and mode are 84.5% and 88%, respectively, with 75% of values below 87.125%. Glycerol yield
has an average of 10.618% and a standard deviation of 1.3088%, with a median of 10.5% and a mode of 9.0%,
showing slight variability and multiple modes. Ester content is highly consistent, with an average of 96.16%, a
low standard deviation of 1.079, and a median matching the mean at 96.2%. The acid value is closely grouped
around the mean of 0.51 mg KOH/g, with a low standard deviation of 0.1129. Flash point and cetane number show
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TABLE 3. Descriptive Statistics of Biofuel Properties and Economic Indicators

Mean Median Mode
Percentiles

25 50 75
Biofuel Yield (%) 83.83 84.5 88 80 84.5 87.125
Glycerol Yield (%) 10.618 10.5 9.0a 9.425 10.5 12
Ester Content (%) 96.16 96.2 98 95 96.2 97.18
Acid Value (mg KOH/g) 0.51 0.5 0.5 0.4 0.5 0.6
Flash Point (°C) 158.5 159 160 155 159 161
Cetane Number 54.24 55 55 51 55 57
Density (g/cm³) 0.865 0.86 0.86 0.85 0.86 0.88
Viscosity (mm²/s) 4.524 4.5 4.5 4.375 4.5 4.7
Calorific Value (MJ/kg) 39.22 39.15 40 38.68 39.15 39.82
CO2 Reduction (%) 69.62 70 70 68 70 71
Energy Consumption (kWh) 2.08 2 2 1.9 2 2.3
Production Cost (currency/unit) 0.7614 0.76 0.7 0.72 0.76 0.8
Profit Margin (%) 18.12 18 20 16 18 20

moderate variability, with averages of 158.5°C and 54.24, respectively. Density and viscosity display low variability,
indicating consistency. Calorific value, CO2 reduction, and energy consumption are relatively consistent, with
slight variability around their averages. Production cost and profit margin exhibit minimal variability, suggesting
financial stability. Overall, the dataset reflects a mix of high consistency and moderate variability across various
parameters.

FIGURE 1. Biofuel Yield (%)

Graph 1 illustrates the yield of biofuel produced from used cooking oil. The horizontal axis represents the
yield percentage, ranging from 78% to 90%. The vertical axis indicates the frequency of each yield range. The
graph exhibits a bell-shaped curve, with the most frequent yield around 84%. The data distribution has a standard
deviation of 3.4, indicating that most biofuel yields cluster near 84%.

FIGURE 2. Glycerol Yield (%)

Figure 2 displays a histogram showing the distribution of glycerol yield percentages. The x-axis represents
the glycerol yield percentage, ranging from 8.0% to 14.0%, while the y-axis indicates the frequency or number of
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occurrences for each glycerol yield percentage bin. The histogram exhibits a roughly normal distribution shape,
with the highest frequency occurring around the mean value of 10.63%. The standard deviation is 1.59, suggesting
a relatively narrow spread of data around the mean. This distribution implies that most glycerol yields from the
process fall within a concentrated range centred around 10.63%, with fewer occurrences deviating significantly
from the mean value.

FIGURE 3. Ester Content (%)

Histogram 3 depicts the distribution of ester content percentages for a given dataset. The x-axis represents
ester content ranging from approximately 54% to 88%, while the y-axis shows the frequency of occurrences.
The distribution appears roughly normal or bell-shaped, with the highest frequency around the mean value of
approximately 95.18%, as indicated by the curve superimposed on the histogram bars. This shape suggests that
most data points cluster around the central ester content values, with fewer observations at the lower and higher
extremes.

FIGURE 4. Acid Value (mg KOH/g)

Histogram 4 illustrates the distribution of acid values (measured in mg KOH/g) for a set of biofuel samples
derived from cooked oils. The x-axis represents the acid value range, while the y-axis shows the frequency of
samples within each acid value bin. The distribution appears roughly bell-shaped or normal, with the highest
frequency around the mean acid value of 0.51 mg KOH/g, as indicated by the superimposed curve. The standard
deviation is 0.113, indicating a relatively narrow spread of data points around the mean. Most samples have acid
values clustering around the central region, with fewer samples exhibiting extremely low or high acid values. This
distribution suggests that the majority of biofuel samples from cooked oils have acid values close to the average,
with outliers being less common.

The histogram 5 displays the distribution of flash points (in degrees Celsius) for a set of biofuel samples derived
from cooked oils. The x-axis represents the range of flash point temperatures, while the y-axis shows the frequency
or number of samples within each temperature bin. The distribution appears roughly bell-shaped or normal, with
the highest frequency observed around the mean flash point of 158.5°C, as indicated by the superimposed curve.
The standard deviation is 2.936°C, suggesting a relatively tight spread of data points around the mean value. Most
of the samples have flash points clustered near the central region, with fewer samples exhibiting flash points at
the lower and higher extremes of the temperature range. This distribution implies that the majority of the biofuel
samples from cooked oils have flash points close to the average value, while outliers with significantly higher or
lower flash points are less common.
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FIGURE 5. Flash Point (°C)

FIGURE 6. Cetane Number

The histogram 6 shows the distribution of cetane numbers for a set of biofuel samples derived from cooked
oils. The x-axis represents the range of cetane numbers, while the y-axis displays the frequency of samples within
each cetane number bin. The distribution appears approximately bell-shaped or normal, with the highest frequency
around the mean cetane number of 54.24, as indicated by the superimposed curve. The standard deviation is 2.973,
suggesting a moderate spread of data points around the mean. Most biofuel samples have cetane numbers clustered
near the central region, with fewer samples exhibiting cetane numbers at the lower and higher extremes. This
distribution implies that the majority of samples have cetane numbers close to the average, with outliers being less
common. The cetane number is an important parameter for evaluating the ignition quality of diesel fuels, with
higher values generally indicating better ignition properties.

FIGURE 7. Density (g/cm³)

The histogram 7 displays the distribution of densities (in g/cm³) for a set of biofuel samples derived from
cooked oils. The x-axis represents the range of density values, while the y-axis shows the frequency or number of
samples within each density bin. The distribution appears roughly bell-shaped or normal, with the highest frequency
observed around the mean density of 0.86 g/cm³, as indicated by the superimposed curve. The standard deviation is
0.016 g/cm³, suggesting a relatively tight spread of data points around the mean value. Most of the biofuel samples
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have densities clustered near the central region, with fewer samples exhibiting densities at the lower and higher
extremes of the range. This distribution implies that the majority of the samples have densities close to the average
value, while outliers with significantly higher or lower densities are less common. Density is an important property
that affects the combustion characteristics and energy content of biofuels, with higher densities generally associated
with better fuel quality.

FIGURE 8. Viscosity (mm²/s)

Image 8 shows a histogram depicting the distribution of viscosity (measured in mm²/s) for a given dataset.
The x-axis represents the viscosity values, while the y-axis shows the frequency or count of observations within
each viscosity range. The histogram follows a bell-shaped curve, indicating a normal or near-normal distribution.
The mean viscosity value is 4.52 mm²/s, with a standard deviation of 0.185 mm²/s. The sample size (N) is 50.
This distribution suggests that most viscosity measurements are concentrated around the mean value, with fewer
observations at the lower and higher ends of the range. The relatively low standard deviation indicates that the data
points are closely clustered around the mean, reflecting consistent viscosity values within the dataset.

FIGURE 9. Calorific Value (MJ/kg)

Image 9 displays a histogram representing the distribution of calorific values (measured in MJ/kg) for a dataset,
likely related to biofuel derived from cooked oil. The x-axis shows the calorific value ranges, while the y-axis
represents the frequency or count of observations within each range. The histogram appears to follow a roughly
normal distribution, with a mean calorific value of 39.22 MJ/kg and a standard deviation of 0.608. The sample size
(N) is 50.

FIGURE 10. CO2 Reduction (%)

Figure 10 displays a histogram of CO2 reduction percentages achieved using biofuel from cooked oil. The
data shows a mean CO2 reduction of 69.62% with a standard deviation of 1.794%. The sample size (N) is 50.
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The histogram reveals that most reductions fall between 68% and 72%, with the highest frequency around 70%.
The distribution appears roughly normal but slightly left-skewed, indicating a tendency for more frequent lower
reduction percentages within the range.

FIGURE 11. Energy Consumption (kWh)

Figure 11 presents a histogram of energy consumption (in kWh) for producing biofuel from cooked oil. The
data has a mean energy consumption of 2.08 kWh with a standard deviation of 0.243 kWh and a sample size (N) of
50. The histogram shows that energy consumption values are mostly concentrated between 1.8 kWh and 2.4 kWh,
with the highest frequency around 2.0 kWh. The distribution is roughly normal and centered around the mean, but
slightly right-skewed, indicating a slight tendency for higher energy consumption values within the measured range.

FIGURE 12. Production Cost (currency/unit)

Figure 12 shows a histogram of production costs (in currency per unit) for biofuel made from cooked oil.
The mean production cost is 0.76 currency/unit, with a standard deviation of 0.042 and a sample size of 50.
The histogram reveals that production costs predominantly range from 0.70 to 0.825 currency/unit. The highest
frequencies are observed at approximately 0.70 and 0.80 currency/unit, indicating a bimodal distribution. This
distribution suggests two common cost clusters around these values, with fewer instances in the mid-range, creating
a gap around the mean. This bimodal distribution may imply that there are two distinct groups or processes
influencing the production costs, each leading to different cost outcomes. Understanding these clusters can help in
identifying the factors contributing to the cost variations and potentially optimizing production processes to reduce
overall costs.

FIGURE 13. Profit Margin (%)

Figure 13 displays a histogram representing the distribution of profit margins in percentage terms for biofuel
production from cooked oil. The x-axis represents the profit margin percentage, while the y-axis shows the
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frequency or number of occurrences for each profit margin bin. The distribution exhibits a bell-shaped curve,
characteristic of a normal distribution. Bell curves are symmetrical, with the highest frequency occurring at the
mean or central value. In this case, the mean profit margin is 18.12%, with a standard deviation of 1.923%. This
distribution indicates that most profit margins are clustered around the mean value, with fewer instances at the lower
and higher ends of the range. The relatively low standard deviation suggests that the profit margins are closely
grouped around the mean, reflecting consistent profitability within the dataset.

TABLE 4. Pearson Correlation Matrix of Biofuel Properties and Economic Indicators
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Biofuel Yield (%) 1 -.987 .971 -.958 .992 .978 -.943 -.978 .945 .979 -.942 -.982 0.251

Glycerol Yield (%) -.987 1 -.976 .954 -.976 -.968 .924 .973 -.963 -.980 .926 .970 -0.262

Ester Content (%) .971 -.976 1 -.956 .956 .962 -.937 -.967 .972 .957 -.925 -.960 .325*

Acid Value (mg KOH/g) -.958 .954 -.956 1 -.945 -.913 .925 .967 -.912 -.938 .857 .932 -.316*

Flash Point (°C) .992 -.976 .956 -.945 1 .972 -.922 -.963 .918 .970 -.941 -.971 0.184

Cetane Number .978 -.968 .962 -.913 .972 1 -.913 -.947 .958 .958 -.981 -.957 .284*

Density (g/cm³) -.943 .924 -.937 .925 -.922 -.913 1 .921 -.899 -.902 .875 .927 -0.215

Viscosity (mm²/s) -.978 .973 -.967 .967 -.963 -.947 .921 1 -.929 -.976 .905 .969 -.324*

Calorific Value (MJ/kg) .945 -.963 .972 -.912 .918 .958 -.899 -.929 1 .931 -.925 -.935 .408

CO2 Reduction (%) .979 -.980 .957 -.938 .970 .958 -.902 -.976 .931 1 -.906 -.978 0.268

Energy Consumption (kWh) -.942 .926 -.925 .857 -.941 -.981 .875 .905 -.925 -.906 1 .903 -0.234

Production Cost -.982 .970 -.960 .932 -.971 -.957 .927 .969 -.935 -.978 .903 1 -.289*

Profit Margin (%) 0.251 -0.262 .325* -.316* 0.184 .284* -0.215 -.324* .408 0.268 -0.234 -.289* 1

Table 4 presents the Pearson correlation coefficients for various factors related to biofuel production and its
economic implications. Each coefficient, ranging from -1 to 1, indicates the strength and direction of the association
between two variables. Biofuel yield (%) shows substantial negative correlations with glycerol yield (-0.987),
acid value (-0.958), and production cost (-0.982), indicating that as biofuel yield increases, glycerol yield and
production expenses decrease. Conversely, it has significant positive correlations with ester content (0.971), flash
point (0.992), cetane number (0.978), and calorific value (0.945), suggesting that higher biofuel yield correlates with
elevated levels of ester content, flash point, cetane number, and calorific value. Glycerol yield (%) exhibits negative
correlations with biofuel yield, ester content, and production cost, while positively correlating with viscosity (0.973)
and profit margin (-0.262). Ester content (%) shows strong positive correlations with biofuel yield, flash point,
cetane number, and calorific value, and negative correlations with acid value and viscosity. Additional noteworthy
correlations include a significant negative association between energy consumption and biofuel yield (-0.942) and
positive correlations between profit margin and ester content (0.325) and calorific value (0.408). The negative
correlation between energy consumption and biofuel yield (-0.942) implies that as biofuel yield increases, energy
consumption decreases, potentially indicating enhanced production efficiency. The strong positive correlation
between ester content and both flash point (0.956) and calorific value (0.972) suggests that increased ester content
corresponds to higher fuel stability and energy content, which are desirable attributes in biofuels. Conversely, the
negative correlation between ester content and acid value (-0.956) indicates that as ester content in biofuel increases,
acidity decreases, signifying superior fuel quality. The positive correlation between production cost and glycerol
yield (0.970) implies that higher glycerol yield is associated with increased production costs, possibly due to the
additional processing or purification steps required to manage excess glycerol.

Table 5 outlines the summary of regression models for various factors related to biofuel production. R Square
values, ranging from 0.707 to 0.997, indicate the proportion of variance in the dependent variables explained by
the independent variables. Adjusted R Square values, which account for the number of predictors, are slightly
lower but still suggest substantial explanatory power. The standard error of the estimate, which measures prediction
accuracy, ranges from 0.00448 to 1.197. Lower values indicate more precise predictions based on the independent
variables. Change statistics, including R Square Change and F Change, assess model fit improvement with each
additional independent variable. Significant F Change values (p = 0) indicate the models’ statistical significance and
the collective contribution of independent variables to explaining variance in the dependent variable. Regression
models for biofuel yield, glycerol yield, ester content, acid value, flash point, cetane number, viscosity, calorific
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TABLE 5. Regression - Model Summary

Dependent Variable R R Square Adjusted R Square Std. Error of the Estimate
Change Statistics

R Square Change F Change df1 df2 Sig. F Change

Biofuel Yield (%) .999a 0.997 0.996 0.2039 0.997 1131.906 12 37 0

Glycerol Yield (%) .996a 0.992 0.989 0.1346 0.992 382.726 12 37 0

Ester Content (%) .993a 0.985 0.980 0.1510 0.985 206.099 12 37 0

Acid Value (mg KOH/g) .991a 0.982 0.976 0.0175 0.982 166.298 12 37 0

Flash Point (°C) .997a 0.995 0.993 0.2460 0.995 578.811 12 37 0

Cetane Number .997a 0.995 0.993 0.2440 0.995 603.495 12 37 0

Density (g/cm³) .971a 0.943 0.925 0.0045 0.943 51.010 12 37 0

Viscosity (mm²/s) .994a 0.988 0.984 0.0233 0.988 253.628 12 37 0

Calorific Value (MJ/kg) .994a 0.988 0.984 0.0780 0.988 247.707 12 37 0

CO2 Reduction (%) .993a 0.985 0.980 0.2510 0.985 205.050 12 37 0

Energy Consumption (kWh) .995a 0.991 0.988 0.0270 0.991 338.231 12 37 0

Production Cost .994a 0.989 0.985 0.0052 0.989 266.842 12 37 0

Profit Margin (%) .841a 0.707 0.612 1.1970 0.707 7.454 12 37 0

value, CO2 reduction, energy consumption, and production cost show strong explanatory power and statistical
significance. However, the profit margin model has lower R Square and Adjusted R Square values, indicating less
explanatory capacity compared to the other dependent variables.

TABLE 6. ANOVA (regression)
Model Sum of Squares df Mean Square F Sig.
Biofuel Yield (%) 564.77 12 47.064 1131.906 .000a

Glycerol Yield (%) 83.263 12 6.939 382.726 .000a

Ester Content (%) 56.239 12 4.687 206.099 .000a

Acid Value (mg KOH/g) 0.614 12 0.051 166.298 .000a

Flash Point (°C) 420.26 12 35.022 578.811 .000a

Cetane Number 430.92 12 35.91 603.495 .000a

Density (g/cm³) 0.012 12 0.001 51.01 .000a

Viscosity (mm²/s) 1.651 12 0.138 253.628 .000a

Calorific Value (MJ/kg) 17.897 12 1.491 247.707 .000a

CO2 Reduction (%) 155.44 12 12.954 205.05 .000a

Energy Consumption (kWh) 2.865 12 0.239 338.231 .000a

Production Cost (currency/unit) 0.086 12 0.007 266.842 .000a

Profit Margin (%) 128.24 12 10.686 7.454 .000a

Table 6 presents the analysis of variance (ANOVA) results for the regression models of various factors related
to biofuel production. The ANOVA table assesses the significance of each independent variable’s contribution
to explaining the variance in the dependent variable. For biofuel yield (%), glycerol yield (%), ester content
(%), acid value (mg KOH/g), flash point (°C), cetane number, density (g/cm³), viscosity (mm²/s), calorific value
(MJ/kg), CO2 reduction (%), energy consumption (kWh), and production cost (currency/unit), the sum of squares,
degrees of freedom, mean square, F-value, and significance level (Sig.) are reported. Significant F-values (p = 0)
across all variables indicate that the regression models are statistically significant, implying that the independent
variables collectively contribute to explaining the variance in the respective dependent variables. The sum of squares
quantifies the variance explained by each independent variable, with higher values suggesting greater influence.
Notably, the profit margin (%) model also shows significant results, indicating that the independent variables have
a statistically significant effect on profit margin. However, the F-value and mean square for profit margin (%)
are comparatively lower than those for other variables, suggesting a lesser degree of variance explained by the
independent variables in relation to profit margin. Furthermore, the ANOVA results reveal the relative importance of
each independent variable in explaining the variance in the dependent variables. Variables such as biofuel yield (%),
glycerol yield (%), flash point (°C), cetane number, and calorific value (MJ/kg) exhibit particularly high F-values
and mean square values, indicating substantial contributions to the regression models. Conversely, variables like
density (g/cm³), production cost (currency/unit), and profit margin (%) show comparatively lower F-values and
mean square values, suggesting a lesser impact on the dependent variables’ variance. Despite this, all variables
demonstrate statistical significance, reinforcing their relevance in the biofuel production process and economic
analysis.
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4. CONCLUSION

The analysis of biofuel production from waste cooking oil (WCO) and its associated parameters has revealed several
significant insights. These findings underscore the viability of WCO as a feedstock for biodiesel synthesis, offering
a sustainable solution to waste management while addressing energy security concerns. Statistical analysis unveiled
strong correlations among various parameters, highlighting their interdependence in optimizing biofuel production
efficiency and quality. Notably, biofuel yield displayed robust positive correlations with ester content, flash point,
cetane number, and calorific value, indicating that higher yields correspond to improved fuel properties. Conversely,
negative correlations were observed between biofuel yield and factors like glycerol yield, acid value, and production
cost, suggesting potential trade-offs in process optimization. Regression models and ANOVA analyses further
reinforced the statistical significance of the independent variables in explaining the variance observed in biofuel
yield, glycerol yield, ester content, acid value, flash point, cetane number, density, viscosity, calorific value,
CO2 reduction, energy consumption, and production cost. This underscores the importance of considering and
fine-tuning these parameters to enhance process efficiency, fuel quality, environmental sustainability, and economic
viability. While the profit margin model exhibited a lower explanatory capacity compared to other dependent
variables, its statistical significance highlights the influence of the independent variables on profitability. Further
research into optimizing these variables could potentially improve profit margins, thereby fostering the economic
feasibility of biofuel production from WCO. The analysis also highlighted the importance of statistical tools like
SPSS in facilitating rigorous data analysis and enabling informed decision-making. The reliability and validity
of the data, as evidenced by the Cronbach’s Alpha and descriptive statistics, lend credibility to the findings and
provide a solid foundation for future research endeavours. The study emphasises the promising potential of WCO
as a sustainable feedstock for biofuel production, offering a viable solution to waste management challenges while
contributing to energy security and environmental sustainability goals. The insights gained from the statistical
analysis can guide process optimisation, fuel quality enhancement, and economic viability assessments, paving the
way for the widespread adoption of biofuels derived from waste cooking oil.
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