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Abstract - The rapid growth of online activities such as commerce, education, research, and virtual 

conferences has led to a greater reliance on digital images as primary information sources on social media 

and other platforms. The extensive use, combined with the ease of modification via image-editing software, 

highlights the crucial need for effective image forgery detection tools. Traditional detection methods based 

on handcrafted features have grown less efficient, prompting the introduction of deep learning-based 

approaches, many of which combine transfer learning with pre-trained models to improve detection 

efficiency and shorten training time. This research presents a comprehensive evaluation of image forgery 

detection algorithms, categorizing them as classical, deep learning, and transfer learning frameworks. The 

study compares deep learning with transfer learning methods, assessing their strengths in feature 

extraction, classification, and detection accuracy. The findings indicate that, while transfer learning models 

are particularly effective at feature extraction using pre-trained architectures, deep learning remains 

superior for classification tasks. This insight intends to help academics construct high-accuracy, efficient 

models for detecting various forms of forgeries. Combining pre-trained models for feature extraction and 

deep learning for classification is the best option for real-time digital forensics, increasing detection 
accuracy and processing speed. 

Keywords: Image Forgery Detection, Deep Learning Techniques, Image Tampering, Feature Extraction, 

Public Image Forgery Datasets. 

I. INTRODUCTION 

Images are vital across various domains, such as medicine, education, digital forensics, sports, scientific research, 

and the media, where they function as key sources of information. Nonetheless, the accessibility of advanced 

editing software like Photoshop, GIMP, and CorelDRAW, in addition to mobile programs like Photo Hacker, has 

rendered the creation of modified or counterfeit photographs uncomplicated. Verifying the legitimacy of a 

photograph is essential, particularly when utilized as evidence in judicial proceedings. Image manipulation, 

defined as any modification of a digital image, includes forgeries techniques that modify an image's content to 

convey a misleading story. Image tampering, a type of forgerie, alters particular components inside an image—

either by duplicating and relocating elements from the same image (copy-move tampering) or by including 

elements from a different image (image splicing). 

 

Techniques for detecting image forgery are categorized into two main approaches: active and passive. Active 

approaches entail incorporating supplementary information, like digital watermarks, during image capture or 

modification, which subsequently facilitates the identification of alterations. Passive methods, referred to as "blind 

approaches," identify modifications without depending on embedded information. They examine the intrinsic 

characteristics of the image to detect indications of alteration. Passive approaches can be further categorized 

according to the specific sort of forgery they target, including compression, re-sampling, copy-move 

manipulation, or splicing. Copy-move and splicing forgeries are notably difficult to detect visually, requiring 

specialized procedures for accurate identification—essential for digital image forensics. In contrast to active 

approaches such as watermarking, passive methods tend to be more versatile yet pose significant hurdles in 

detecting manipulation. Various methodologies for identifying image manipulation have been suggested based on 

these findings, as depicted in Figure 1. 
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Active (Non-blind) Approaches and Passive (Blind) Approaches are the two main categories into which the Figure 

1 shows a classification of several picture forgery detection techniques. These two approaches reflect somewhat 

distinct ways of spotting picture modification depending on whether they rely on additional embedded data or just 

examine the intrinsic characteristics of the image. Active (Non-blind) Approaches are methods that utilize 

auxiliary data that is embedded within an image to aid in the identification of any modifications. Typically, these 

methods incorporate either Digital Watermarking or Digital Signature. Unique identifiers or watermarks are 

embedded within the image during the acquisition or editing stage in digital watermarking. One can confirm the 

image's legitimacy later on by using these markers. Digital signatures are thus cryptographic elements included 

in the image to enable the authentication and integrity verification. In controlled contexts where integrating this 

knowledge is practical, active techniques are successful; yet, their relevance is limited by the need for previous 

intervention during image production or editing. 

 
FIGURE 1. Classification of Forgery Detection Techniques (FDT). 

 

Passive, or blind, methods, on the other hand, are more flexible for a wide range of uses especially when working 

with photos devoid of watermarks or signatures since they depend on no pre-existing embedded information inside 

the image. Further divisions among passive techniques are forgery-dependent and forgery-type independent ones. 

Among the particular forms of tampering that underlie forging type-dependent techniques are copy-move and 

image splicing. While in image splicing parts from several photographs are joined, in copy-move forging sections 

of an image are replicated within the same image to fool viewers. These methods require various detection 

strategies that are adapted to the particular characteristics of each type of manipulation. 

Passive techniques in the forgery-type independent category are intended to identify alterations that could 

jeopardize an image's overall visual characteristics without relying on specific modification patterns. Changes in 

clarity, texture, and colour are frequently identified during image retouching. The Lighting Condition study 

detects any changes to image illumination due to the potential for modified images to have unusual lighting 

patterns or shadows. These forgery-type independent approaches assist digital forensics in identifying minor 

manipulations. 

 

 

 

 

 



Kuppampati Sowmya.et.al / REST Journal on Data Analytics and Artificial Intelligence 3(2), June 2024, 142-151 

Copyright@ REST Publisher                                                                                                                                                144 
 

2. DIGITAL IMAGE FORGERY DETECTION STRATEGIES  

Digital Image Forgery Detection (IFD) is a binary classification task focused on determining whether an image is 

forged or authentic. A typical framework for blind or passive IFD follows a structured process comprising several 

key stages, as outlined in Figure 2. 

 
FIGURE 2. Block diagram for IFD 

Preprocessing: In this initial phase, various preparatory operations are applied to the image to enhance feature 

extraction. These may include converting the image from RGB to grayscale, performing histogram equalization, 

and applying smoothing filters, all aimed at standardizing the image for the subsequent analysis. 

Feature Extraction: Next, distinctive features are extracted that can differentiate between authentic and forged 

images. Informative and manipulation-sensitive features are selected to maximize detection accuracy, ensuring 

that these characteristics are highly indicative of image tampering. 

Feature Matching: During this phase, feature vectors from different regions of the image are compared to identify 

potential similarities. In block-based methods, for example, rectangular regions are analyzed for matching features, 

which helps in detecting inconsistencies. This comparison plays a critical role in determining whether the image 

shows signs of tampering. 

Filtering: Not all feature vectors contribute meaningfully to the analysis; some may produce false positives in 

terms of similarity. Thus, a filtering step is applied to exclude irrelevant feature vector pairs and retain only those 

that genuinely indicate potential forgery. 

Classification: In this step, a trained classifier is used to assign the image to one of the two classes—either forged 

or authentic. The classifier’s decision is based on the previously extracted and filtered features, aiming to 

accurately distinguish between tampered and genuine images. 

Post-processing: After classification, additional analysis can be performed for further insights. For instance, image 

forgery localization is a post-processing step that highlights specific areas of forgery within the image, providing 

more detailed information about the tampering after the image has been identified as forged. 

Numerous comprehensive reviews of Digital Image Forgery Detection techniques have been conducted, 

organizing these methods based on the feature extraction and classification techniques they employ. Digital image 

forgery detection algorithms are broadly categorized into two main groups: Machine Learning Techniques and 

Deep Learning Techniques, as illustrated in Figure 3. 
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FIGURE 3. Types of IFD 

 

3. CONVENTIONAL TECHNIQUES 

Copy-Move Interference Detection entails identifying a region within an image, duplicating it, and repositioning 

it elsewhere in the same image, resulting in highly linked duplicated portions. The steps for Detection of Copy-

Move Tampering in Image is shown in Figure 4. The objective of copy-move detection approaches is to find 

duplicated regions by examining similarities or distances between characteristics taken from various segments of 

the image. Researchers employ two methodologies for this detection: (i) segmenting the image into small blocks 

and extracting features from each block, or (ii) pinpointing keypoints throughout the image and extracting features 

from each keypoint. By analysing features block-by-block or keypoint-by-keypoint, corresponding pairings can 

be recognised, validating the existence of duplicated areas and suggesting manipulation. These strategies are 

efficacious when the duplicated region is sufficiently extensive to encompass many blocks or keypoints, 

facilitating trustworthy comparison. 

Image Fusion Detection, conversely, refers to the process of spotting forgeries in which segments of numerous 

photographs are amalgamated into a singular composite. In contrast to copy-move forgery, picture splicing does 

not contain replicated areas within the same image, rendering it more difficult to identify. Detection approaches 

depend on recognizing indicators left post-tampering, including edge discontinuities, illumination inconsistencies, 

geometric anomalies, and camera-specific attributes. For instance, edges at the spliced boundaries may appear 

artificial, or lighting throughout areas may be inconsistent. Researchers such as Johnson and Farid employ 

techniques to compute illumination trajectories inside a picture; discrepancies in these trajectories may indicate 

manipulation. Furthermore, when JPEG images are altered and subsequently re-saved, double quantization (DQ) 

artifacts may manifest as a result of numerous compression processes. Popescu and Farid have devised techniques 

for identifying double-compressed JPEG photos, so offering additional proof of manipulation. 
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FIGURE 4. Steps in Copy-Move Tampering in Image 

4.  DEEP LEARNING TECHNIQUES 

Techniques for Image Forgery Detection (IFD) based on deep learning markedly diverge from conventional IFD 

algorithms. In these methodologies, a deep neural network (DNN) is engineered to do both feature extraction and 

classification inside. The DNN independently collects essential information from input photos and classifies them 

with high precision, utilising well-initialized weights and optimised network parameters during training. These 

attributes, referred to as deep learning-based features, are obtained directly from the network layers, thereby 

obviating the necessity for human feature engineering. In certain cases, handcrafted features are incorporated into 

the DNN to diminish training duration and improve accuracy, facilitating a more efficient and effective detection 

process. 

In recent years, various new algorithms for image fraud detection have emerged, each with its methodology for 

detecting manipulated material in digital photos. One such approach is the automatic picture splicing forgery 

detection scheme described in [10], which makes use of feature extraction based on color filter array analysis. 

After extracting features, Principal Component Analysis (PCA) is used to minimize dimensionality and improve 

the detection process' efficiency. Another notable contribution comes from [11], which proposes a constrained R-

CNN model for image modification detection. This model employs a coarse-to-fine method, starting with a 

learnable manipulation feature extractor. The technique performs well in distinguishing modified regions, 

demonstrating deep learning's ability to deal with complex forgeries. The dual-encoder UNet (D-Unet), described 

in [12], is a very excellent network for identifying picture splicing forgeries. This architecture incorporates two 

encoders, one for learning picture fingerprints and distinguishing between tampered and authentic regions, and 

the other for providing directional information to improve learning and detection capabilities. Another important 

breakthrough is the Progressive Spatio-Channel Correlation Network (PSCC-Net), announced in [13], which uses 

a two-path processing method. The top-down path collects both local and global characteristics, whereas the 

bottom-up path focuses on manipulation detection and mask estimation. This dual-path approach allows for 

accurate localization of tampered areas in photos [14]. 

In [15], researchers created the Multi-Domain Learning Convolutional Neural Network, a real-time forensic 

approach that takes advantage of periodicity patterns in both original and changed photos. This method uses a 

multi-domain loss function to improve the recognition of deep learning features. In addition, [16] suggested a 

strategy for detecting and localizing image splicing that combines a CNN-based local feature descriptor with a 

fully linked conditional random field. This method is supplemented with a novel initialization methodology for 

the first convolutional layer based on the spatial rich model (SRM), which effectively improves splice localization. 

Further advancements include the hybrid features and semantic reinforcement network (HFSRNet) reported in 

[17], which uses encoding-decoding principles, Long Short-Term Memory (LSTM), and rotating residual units to 

improve detection accuracy. This network also uses semantic reinforcement to help distinguish between tampered 
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and authentic parts. Another effective approach, integrating camera model identification (CMI) and IFD, is 

proposed in [18]. This CNN-based model is adept at managing typical picture modifications, particularly those 

found in photographs shared online, after training with a combination of compressed and uncompressed images. 

Recent advances in Copy-Move Forgery Detection (CMFD) are illustrated in [19], in which a deep learning 

strategy uses CNNs to gain hierarchical feature representations for exact tampering detection. [20] introduces a 

CNN model with multi-scale input and numerous convolutional stages that is organised into encoder and decoder 

blocks to effectively capture and process features. Other contributions include [21] a lightweight deep learning 

model for double image compression scenarios, [22] a CNN model for real-time splicing detection, and [23] a 

comprehensive CNN framework with multiresolution hybrid features. This framework combines RGB and noise 

streams with a tamper-guided dual self-attention (TDSA) module that directs the network's attention to tampered 

areas for precise segmentation. Furthermore, in [24], a boundary-to-pixel direction (super-BPD) technique is 

paired with a deep CNN for copy-move IFD and localisation, which improves edge detection accuracy. A 

streamlined CNN approach developed in [25] is simple and effective at detecting copy-move forgeries with high 

accuracy. 

These studies illustrate the ongoing progress and diversification of strategies for detecting image forgeries. Each 

method provides useful insights into maintaining digital picture integrity, with solutions ranging from splicing 

detection to copy-move forgery detection and localization. As technology advances, these creative approaches 

strengthen the landscape of digital forensics and contribute to the overarching goal of preserving image 

authenticity. 

5. TRANSFER LEARNING STRATEGIES 

The advancements in digital image forgery detection have seen the development of numerous methods leveraging 

deep learning architectures. In [26], researchers introduced a deep learning-based approach for detecting image 

splicing, beginning with preprocessing the input image using a technique called 'Noiseprint' to extract noise 

residuals. Following this, the ResNet-50 model was utilized as a feature extractor, and the extracted features were 

classified using an SVM classifier. Another notable method, described in [27], employs stacked autoencoders 

(SAE) across various image compression levels, using pre-trained CNN models like VGG16 and AlexNet to serve 

as feature extractors. The method capitalizes on the activations from the fully connected layers of these CNN 

models to enhance detection accuracy. 

Research in [28] introduced an image forgery detection technique that combines color illumination and semantic 

segmentation to achieve pixel-level classification, using a fine-tuned VGG-16 model to classify images as genuine 

or manipulated. Similarly, a robust model tailored for image splicing detection is presented in [29], where grayscale 

conversion and Total Variation Distance (TVD) analysis are first applied. Feature extraction is then conducted 

using VGG16, GoogLeNet, and DenseNet201, and the classification process is carried out with SVM, naïve Bayes, 

and KNN classifiers. Another method, described in [30], adopts a decision fusion approach using CNN models 

like ResNet-18, ResNet-50, and ResNet-101. Pre-trained weights are initially used to evaluate image tampering, 

and fine-tuned weights help in comparing the results, enhancing the model's performance. 

In the area of copy-move forgery detection, [31] introduced two distinct approaches. Model1 features a custom-

designed architecture, while Model2 uses transfer learning with VGG-16. To address the generalization challenge 

in forgery detection, the architecture was trained on one dataset and evaluated on multiple others, enhancing its 

applicability across diverse datasets. Another multiple-image splicing detection method was proposed in [32], 

which utilizes Mask R-CNN with MobileNet V1 as a lightweight backbone model. Depth-wise separable 

convolution was used to minimize computational load, improving processing speed without sacrificing accuracy. 

Additionally, a multimodal deep learning-based network was introduced in [33], utilizing DCNN for initial forgery 

detection followed by part-based image retrieval, with InceptionV3 playing a critical role in feature extraction. 

Further contributions include an image splicing detection technique described in [34], which consists of 

preprocessing, feature extraction using a pre-trained AlexNet model, and classification via Canonical Correlation 

Analysis (CCA) for binary classification. In [35], a blind IFD technique employed a ResNet-conv backbone with 

Mask-RCNN for feature extraction, exploring ResNet-50 and ResNet-101 architectures. Another innovative 

approach, described in [36], utilizes a feature fusion-based technique combining RGB color space and luminance 

channels, extracting local binary feature maps and feeding them into ResNet-18 for further analysis. Lastly, an 

IFD model based on AlexNet with batch processing and softmax activation was introduced in [37], while [38] 

explored the use of resource-efficient models like SmallerVGGNet and MobileNetV2, which are optimized for 

forgery detection on embedded devices, particularly in cases involving transformations like brightness changes, 

blurring, noise, cropping, and rotation. 
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In [39], a blind image splicing detection technique was introduced, utilizing a deep convolutional residual network 

architecture based on ResNet-50, initialized with ImageNet weights, and excluding fully connected layers for 

classification. This approach focuses on extracting essential image features while maintaining a streamlined 

network structure. Additionally, [40] presented a method that processes image batches and incorporates YOLO 

weights into a CNN using the ResNet50v2 architecture, allowing for a robust comparative analysis with existing 

forgery detection techniques. Another significant contribution, the Optimal Deep Transfer Learning Copy Move 

Forgery Detection (ODTLCMFD) technique, is detailed in [41]. This method employs MobileNet with a political 

optimizer (PO) for feature extraction and integrates an enhanced bird swarm algorithm (EBSA) for classification 

optimization, using a least square support vector machine (LS-SVM) with the Multiclass Support Vector Machine 

(MSVM) approach to boost classification accuracy. Finally, [42] proposed a detection strategy for both copy-move 

and splicing forgeries by using three CNN models: Error Level Analysis (ELA), VGG16, and VGG19, where 

preprocessing at a specific compression rate helped to optimize model training. 

Comparison of DLand TL methods  

Traditional Convolutional Neural Networks (CNN) and transfer learning are distinguished by their respective data 

requirements, learning processes, and knowledge transfer. Figure 5 demonstrates the distinctions between the two. 

The Traditional CNN approach commences with a substantial dataset from Domain A on the left. The model is 

capable of capturing intricate patterns and features that are unique to the dataset by undergoing a comprehensive 

learning process on this extensive dataset. The model accurately classifies images within the same domain by 

utilizing the learned features it has acquired after training. Computationally intensive and time-consuming to train, 

conventional CNNs necessitate substantial quantities of data for effective learning.  

 
FIGURE 5. DL Vs TL 

The Transfer Learning approach, depicted on the right, resolves the issue of inadequate data availability by 

repurposing knowledge acquired in a distinct field. Initially, a CNN model is trained on a large dataset from 

Domain A and subsequently applied to a new task in Domain B, which has a small dataset. The knowledge acquired 

in Domain A is transferred, thereby reducing the necessity for exhaustive training on the smaller dataset of Domain 

B. This transfer of knowledge enables the model to classify data in Domain B with increased accuracy and reduced 

training time by utilising the features that have been previously acquired, rather than starting from blank. This 

method is particularly advantageous in scenarios where the acquisition of substantial labeled datasets is either 

challenging or expensive. In digital image forgery detection, deep learning and transfer learning algorithms exhibit 

significant potential, each with distinct strengths and applications. Deep learning techniques depend on extensive 

neural network designs, like CNNs and bespoke models, engineered to autonomously extract characteristics from 

photos and identify alterations. Methods such as D-Unet for splicing detection [43], the Progressive Spatio-

Channel Correlation Network (PSCC-Net) for localization [44], and multi-domain learning convolutional neural 

networks [45] illustrate deep learning's ability to manage intricate feature extraction and classification within a 

unified framework. Deep learning algorithms, through the acquisition of hierarchical features, excel at collecting 
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complex subtleties frequently overlooked by conventional, handmade features. These methods are predominantly 

end-to-end, necessitating solely labelled data and an appropriate network architecture for optimal operation. 

Conversely, transfer learning techniques utilize pre-trained models, typically initialized on extensive datasets such 

as ImageNet, which are subsequently refined for the specific objective of forgery detection. Examples include 

employing ResNet-50 for splicing detection following Noiseprint preprocessing [46] and utilizing VGG16 for 

detecting pixel-level manipulations [47]. Transfer learning can markedly decrease the time and computer resources 

needed for training, as these models inherently include general image properties. Methods such as Optimal Deep 

Transfer Learning Copy Move Forgery Detection (ODTLCMFD) [48] and the incorporation of pre-trained YOLO 

weights into a CNN utilizing ResNet50v2 architecture [49] highlight the adaptability of transfer learning for 

particular forgery detection applications. Transfer learning methods utilize features from extensive datasets to 

facilitate quicker convergence, frequently requiring a smaller sample, therefore proving invaluable in data-scarce 

situations. 

Both strategies encounter challenges and limitations. Deep learning methodologies sometimes necessitate 

extensive, annotated datasets for optimal performance, which can be challenging to get in the realm of counterfeit 

detection. They are computationally demanding, necessitating substantial processing power for training. 

Moreover, these approaches may encounter difficulties with generalization, since they are prone to overfitting the 

specific training dataset, hence constraining their efficacy on novel or unencountered forging types. Transfer 

learning mitigates certain challenges by minimizing data requirements; nonetheless, it continues to encounter 

problems in adapting pre-trained models to the domain-specific characteristics inherent to forgeries. Some 

counterfeit artifacts may be insufficiently represented in broad datasets like ImageNet, resulting in unsatisfactory 

feature extraction for sophisticated operations such as splicing or copy-move forgeries. Moreover, transfer learning 

models frequently necessitate meticulous adjustment to prevent the transfer of extraneous information from the 

source domain, potentially resulting in suboptimal performance. 

Both deep learning and transfer learning methodologies encounter difficulties in identifying subtle forgeries or 

those that include intricate alterations, such as geometric distortions and fluctuating lighting conditions. Ensuring 

effective detection across various compression levels, image formats, and noise levels continues to be a prevalent 

challenge. Resolving these problems will probably necessitate hybrid models that integrate the feature extraction 

capabilities of deep learning with the efficiency of transfer learning, alongside additional study into dataset 

augmentation and the refinement of model architectures to enhance generalization and detection accuracy. 

6. CONCLUSION 

This survey paper provides a comprehensive overview of digital image forgery detection techniques, offering a 

classification of forgery methods and a detailed examination of various approaches used in detecting image 

tampering. Starting with traditional techniques, which rely on handcrafted features and are often limited to specific 

types of manipulations, we discussed how these methods laid the foundation for more advanced techniques. The 

review then shifts to deep learning-based methods, which leverage neural networks to autonomously extract and 

classify complex features within images, demonstrating higher accuracy and adaptability across various types of 

forgeries, including copy-move and splicing. The paper also highlights the emerging role of transfer learning 

approaches, where pre-trained models are adapted to the forgery detection domain. By using pre-trained 

architectures such as ResNet, VGG, and MobileNet, transfer learning enables faster model convergence and 

reduces data requirements, making it suitable for scenarios with limited labeled forgery data. This paper contrasts 

deep learning and transfer learning methods, emphasizing that while deep learning excels in capturing complex 

features directly from data, transfer learning offers efficiency by leveraging knowledge from general-purpose 

datasets. The strengths and limitations of each approach were analyzed, demonstrating that both methods offer 

unique advantages in digital forensics but face challenges with generalization, data requirements, and 

computational costs. 

Finally, this survey identifies common challenges in digital image forgery detection, such as handling diverse 

manipulation types, ensuring robustness across different image qualities, and improving detection accuracy under 

limited data availability. Moving forward, there is a need for hybrid models that can combine the adaptability of 

deep learning with the efficiency of transfer learning, along with expanded, high-quality datasets that represent a 

broader range of forgery types. The findings of this paper contribute to a better understanding of the current 

landscape in forgery detection, providing a foundation for future advancements in preserving the authenticity and 

integrity of digital images. 
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