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 Abstract: This paper explores the intersection of deep learning and robotics, focusing on the development 

and implementation of structured deep visual models for improving the perception and control of robotic 

systems in manipulation tasks. The integration of convolution neural networks (CNNs), recurrent neural 

networks (RNNs), and attention mechanisms plays a pivotal role in enabling robots to efficiently interpret 

visual data and make informed decisions in complex and dynamic environments. The presented research 

contributes to the ongoing efforts in bridging the gap between perception and action in robotics, paving the 

way for more robust and intelligent manipulation capabilities in diverse and challenging environments. 

The insights gained from this study offer valuable guidance for researchers, engineers, and practitioners 

working on the forefront of advancing robotic systems through the integration of deep learning techniques. 

Structured deep visual models contribute to improving a robot's ability to perceive and understand its 

environment. This includes advancements in object recognition, pose estimation, and scene understanding, 

allowing robots to interact with their surroundings more intelligently. The integration of deep learning in 

robot manipulation empowers robots to operate with greater autonomy. Structured visual models enable 

robots to make informed decisions based on visual data, reducing the need for explicit programming and 

enhancing adaptability in dynamic environments. The acceptability of alternatives is gauged by comparing 

them to the average response. Utilizing the EDAS method, this assessment determines the most 

advantageous answer by considering both the average evaluation and its deviation from the mean solution. 

According to the analysis, EDAS favors solutions closer to the ideal solution, while penalizing those with 

negative deviations, indicating a preference for options that closely align with the ideal. From the result 

Graph Neural Networks (GNNs) is got the first rank where as Generative Adversarial Networks (GANs) is 

having the lowest rank. 

 

1. INTRODUCTION 

Deep learning plays a pivotal role in advancing robotics, employing various model designs and training 

methodologies. Convolutional neural networks (CNNs) are frequently employed for tasks involving perception, 

while recurrent networks facilitate sequential decision-making processes. Reinforcement learning is instrumental 

in refining robotic actions through iterative trial and error. Additionally, transfer learning facilitates the transfer 

of knowledge across different domains. The integration of these strategies with simulation-based training is crucial 

for enhancing the robustness and flexibility of robotic systems. [1] In the realm of real-time perception, an 

innovative deep learning system has been developed for visual servo control and grip detection in autonomous 

manipulation robots. Leveraging CNNs, this system allows robots to swiftly adapt their movements by processing 

visual input, thereby ensuring precise grasp detection and manipulation. This advancement enhances the 

versatility and responsiveness of unmanned robotic systems operating in intricate environments. [2] Working with 

flexible objects holds significance across diverse fields like medical procedures, industrial production, and 

everyday household robotics. Managing deformable materials such as ropes, cables, and hoses poses significant 

challenges for robots due to the absence of precise analytical models and the multitude of possible configurations. 

Additionally, teaching robotic manipulation solely through visual inputs and direct physical interaction demands 

extensive training and may struggle to adapt to varying tasks. [3] Mobile service robots are capable of executing 

various practical duties, including guiding tours, delivering products, cleaning, monitoring, and assisting in 
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healthcare. Mobile manipulators excel in tasks like object localization and pick-and-place operations. To 

seamlessly integrate into human-centric environments, these robots must have a small footprint and the ability to 

interact physically with their surroundings. However, conventional wheeled robots often have bulky bases to 

prevent tipping, which compromises their speed and agility. The idea of autonomous wheeled robots addresses 

these challenges effectively. Illustrated by the Ball-bot, which stays dynamically stable on a single spherical 

wheel, this design minimizes the possibility of tipping over while enabling the support of taller structures for 

enhanced interaction with humans and reducing the overall weight of the robot. The Ball-bot prototype utilizes an 

existing self-balancing two-wheeled scooter known as the Ninebot Mini Pro. This scooter incorporates a motion 

mechanism capable of detecting changes in tilt angle and subsequently adjusting its forward propulsion, thereby 

aiding the machine in maintaining balance and mobility. The Sawyer robot employs a technique called soft Q 

learning, a form of maximum entropy reinforcement learning, to assemble Lego pieces. The training of a policy 

from scratch takes less than two hours, yielding a policy that demonstrates remarkable resilience to disturbances. 

The concept of compositionality suggests that multiple policies can be amalgamated to create a new policy capable 

of addressing all tasks assigned to its component policies. This trait is advantageous as it facilitates the reutilization 

and swift initiation of policies, enabling the learning of complex compound skills based on previously acquired 

building blocks. Todorov has proposed a similar notion, investigating the integration of independent rewards 

through soft maximization. However, such a form of composition typically addresses each constituent task 

separately, resulting in a disjointed approach. Conversely, our approach to composition combines tasks, typically 

offering greater utility (e.g., simultaneous navigation towards a target while avoiding obstacles) [5]. Visual Servo 

Control of Cable-driven Soft Robotic Manipulator involves utilizing visual feedback to precisely govern the 

movements of a soft robotic manipulator propelled by cables. By employing computer vision algorithms, this 

approach facilitates real-time adjustments, enabling the soft robot to respond dynamically to its environment. Such 

methodology enhances flexibility and precision across various applications, including delicate object 

manipulation and navigation through constrained spaces [6] Deep reinforcement learning (DRL) for robotic 

manipulation control revolves around training neural networks to iteratively make decisions within intricate 

scenarios. Through iterative experimentation, the system discerns optimal actions for tasks like grasping and 

manipulating objects. DRL's inherent adaptability and ability to navigate uncertainty render it a potent strategy 

for augmenting the autonomy and adaptability of robotic manipulation systems [7] Deep effect trajectory 

prediction in robot manipulation employs deep learning techniques to anticipate the trajectory of an object 

undergoing manipulation by a robot. This method utilizes neural networks to grasp intricate relationships, enabling 

accurate forecasts of the impact of the robot's maneuvers on the object's path. These predictions enhance the 

robot's ability to strategize and execute meticulous manipulation tasks effectively. [9] Cognitive radio (CR) 

emerges as the fitting technological remedy for addressing radio resource scarcity and the presence of shared 

channels. Deploying CR systems necessitates the implementation of effective sensing procedures to continually 

monitor channel conditions. Yet, achieving accurate insights into resource status relies heavily on the 

collaboration of multiple sensing devices. [10] Humans often rely on recognizable images or landmarks to 

navigate, while traditional robotic navigation methods require precise mapping, localization, and planning, 

making them vulnerable to slight environmental changes. PoliNet, however, is a deep visual model predictive 

control-policy learning system designed to facilitate visual navigation and prevent collisions with unseen obstacles 

along the path. By leveraging visual trajectory and 360-degree images from the robot's current perspective, 

PoliNet generates velocity commands for a planning horizon of N steps, optimizing trajectories for obstacle 

avoidance.  

2. MATERIALS AND METHODS 

2.1. Alternative parameters: Convolution Neural Networks (CNNs), Graph Neural Networks (GNNs), Recurrent 

Neural Networks (RNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), 

Hierarchical Reinforcement Learning (HRL), Attention Mechanism-based Networks 

2.2. Evaluation parameters: Accuracy (%), Computational Cost (FLOPs), Number of Parameters, Memory 

Footprint (MB) 

2.3. Convolution Neural Networks (CNNs): Convolution Neural Networks (CNNs) are deep learning models 

designed for tasks like image recognition and classification. They employ specialized layers called convolution 

layers to automatically learn hierarchical patterns from input data. These layers use filters to convolve across the 

input image, extracting features such as edges and textures. Through repeated application of convolution and 
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pooling layers, CNNs progressively learn more complex features, enabling them to recognize objects with 

remarkable accuracy and robustness.  

2.4. Graph Neural Networks (GNNs): Graph Neural Networks (GNNs) are a class of neural networks tailored 

for analyzing and learning from graph-structured data. Unlike traditional neural networks, GNNs operate directly 

on graphs, leveraging node and edge relationships. They iteratively update node representations by aggregating 

information from neighboring nodes, enabling them to capture complex graph structures and perform tasks like 

node classification, link prediction, and graph classification. GNNs have found applications in social network 

analysis, recommendation systems, drug discovery, and various other domains where data is naturally represented 

as graphs. 

2.5. Generative Adversarial Networks (GANs): Generative Adversarial Networks (GANs) are a class of deep 

learning frameworks where two neural networks, the generator and the discriminator, compete against each other. 

The generator generates synthetic data, such as images, from random noise, while the discriminator tries to 

distinguish between real and fake data. Through adversarial training, GANs learn to produce increasingly realistic 

samples. GANs have gained widespread attention for their ability to generate high-quality images, and they find 

applications in image synthesis, data augmentation, and anomaly detection. 

2.6. Hierarchical Reinforcement Learning (HRL): Hierarchical Reinforcement Learning (HRL) is a framework 

in reinforcement learning where agents learn and execute actions at multiple levels of abstraction. Instead of 

dealing with a flat action space, HRL organizes actions hierarchically, allowing for more efficient exploration and 

decision-making in complex environments. At higher levels, agents make decisions about broad goals or sub-

tasks, while lower levels handle finer-grained actions to achieve these goals. HRL aims to improve sample 

efficiency, enhance generalization, and enable agents to tackle tasks with long time horizons or intricate structures 

more effectively. 

2.7. Attention Mechanism-based Networks: Attention Mechanism-based Networks are a class of neural networks 

that dynamically weigh the importance of different parts of input data during processing. Inspired by human 

attention, these networks learn to focus on relevant information while disregarding irrelevant details. In tasks like 

machine translation and image captioning, attention mechanisms enable models to selectively attend to specific 

words or image regions, improving performance by allowing the model to focus on relevant context. These 

networks have revolutionized various fields by enhancing model interpretability and performance in tasks 

requiring context-aware processing. 

2.8. Accuracy (%): Accuracy refers to the degree of conformity between a measurement and the true value of 

what is being measured. In various fields like statistics, science, and technology, accuracy is crucial for reliable 

results and decision-making. It reflects the absence of errors or bias in measurements or predictions. Achieving 

high accuracy often involves rigorous testing, calibration, and validation processes. In data analysis, accuracy 

measures how close a model's predictions are to the actual outcomes. It's a fundamental metric in assessing the 

quality and trustworthiness of information and methodologies employed in diverse disciplines. 

2.9. Computational Cost (FLOPs): Computational cost, often quantified in terms of Floating Point Operations 

(FLOPs), denotes the amount of arithmetic operations performed by a computational process. It serves as a 

measure of the workload or complexity involved in executing algorithms or tasks. Higher FLOPs typically indicate 

more intensive computations, requiring more time and resources to complete. Understanding computational cost 

is vital for optimizing algorithms, selecting suitable hardware configurations, and managing computational 

resources efficiently, especially in fields like artificial intelligence, scientific computing, and computer graphics. 

2.10. Number of Parameters: The number of parameters refers to the quantity of variables in a mathematical 

model, particularly prevalent in machine learning and neural networks. These parameters are the values that the 

model adjusts during the training process to minimize error and improve performance. A higher number of 

parameters often implies greater model complexity and capacity to learn intricate patterns from data. However, 

excessive parameters can lead to overfitting and increased computational requirements, necessitating a balance 

between model complexity and generalization ability. 

2.11. Memory Footprint (MB): Memory footprint, typically measured in megabytes (MB), refers to the amount 

of memory space required to store and execute a program or process. It encompasses the total memory usage by 

an application, including code, data, and resources, while it is running. Understanding memory footprint is crucial 

for optimizing software performance and resource management, especially in environments with limited memory 



Karamala Naveen  et.al/ /REST Journal on Data Analytics and Artificial Intelligence 3(3), September 2024, 1-10 

 

Copyright@ REST Publisher                                                                                                                                                      4 
 

capacity such as embedded systems or mobile devices. Minimizing memory footprint helps enhance efficiency 

and enables smoother execution of applications across various computing platforms.  

2.12. Method: The EDAS score serves as a tool for determining the energy requirements of a manufacturing 

facility, predominantly influenced by its proximity to recommended processing equipment. Although there exists 

a disparity between expert opinions and generated data regarding solar and geothermal energy, solar energy is 

favored by experts due to its environmental friendliness and widespread accessibility, ranking second in the Fuzzy 

AHP context. However, its adoption is hindered by high installation costs and subpar performance, as noted in 

reference [13]. The EDAS method is suggested for assessing energy sources in the stock category due to its 

superior accuracy and reduced mathematical complexity compared to other categorization approaches. It is widely 

recognized for its scalability and standard solution capabilities. Moreover, an enhanced version of the EDAS 

technique for supplier selection is proposed based on character replacement position. In the context of solid waste 

management, intuition derived from the EDAS approach recommends employing a fuzzy model to pinpoint 

suitable sites. Reference [14] demonstrates the utilization of EDAS for investigating the constraints of renewable 

energy production.  

The EDAS method is applied in multiple-criteria group decision-making (MCGDM). Initially, it involves defining 

projects and employing the distance strategy, which is then expanded through EDAS. This methodology finds 

practical application and is influenced by the EDAS method. It offers a distinctive and environmentally friendly 

solution to the MCDM problem with inverse properties. The AVS is employed to prioritize options and assess 

them using the PDA and NDA EDAS methods. To address challenges related to Multiple Criteria Decision 

Making (MCDM), EDAS presents a distinctive solution, functioning as both a comprehensive system and 

framework. Based on existing literature, the extended EDAS model performs optimally when grounded in 

intuitive parametric difference measurements. Additionally, it serves as an empirical approach to sanitary waste 

disposal, aiding in the resolution of issues in evaluating initial waste disposal procedures for sanitation while 

ensuring result robustness for the proposed approach. Several recent approaches are compared to assess the 

accuracy of the findings. The EDAS strategy has been improved to incorporate the DHHFL framework for 

achieving carbon neutrality, which could lead Indian Smart Cities to significantly reduce their carbon emissions 

by 2050. EDAS relies solely on distance metrics, and its ranking algorithm is derived from the average of the 

Sweet and Nadir statistical components [19]. While EDAS stands out as one of the most widely used MCDM 

methods, it presents itself as a feasible alternative as well [20]. Particularly in supplier selection, it proves to be 

valuable, as evidenced by the "EDAS Supplier Selection Methodology." However, it is important to note that 

there is a scarcity of research in the current academic literature exploring MADM challenges using the EDAS 

approach. Consequently, employing EDAS in MADM presents an intriguing avenue for research, offering 

opportunities for evaluating and identifying prospects within a single-valued neutrosophic clean environment [21].  

The EDAS methodology, also referred to as "estimation distance from the mean solution based," offers a fresh 

and effective approach to addressing stock-related challenges. Its efficacy is demonstrated through comparisons 

with various Multi-Criteria Decision Making (MCDM) techniques. Additionally, a fuzzy extension of EDAS is 

developed for provider selection, while a simplified version is crafted for choosing a dependable waste disposal 

site. The document also outlines several decision-making strategies employing neutrosophic units, all rooted in 

the principles of the EDAS methodology. In terms of order allocation, an EDAS-based mechanism is introduced, 

considering dealer evaluations and contextual factors. This method integrates stages from the EDAS approach 

and IT2FS mathematical tools to evaluate suppliers' compliance with environmental criteria.  

3. RESULT AND DISCUSSION 

TABLE 1. Evolution of structured deep visual models in robot manipulation 

 

Accuracy 

(%) 

Computational 

Cost (FLOPs) 

Number of 

Parameters 

Memory Footprint 

(MB) 

Convolutional Neural Networks (CNNs) 92.5 50 10 200 

Graph Neural Networks (GNNs) 91.7 45 8 180 

Recurrent Neural Networks (RNNs) 93.2 55 12 220 

Generative Adversarial Networks (GANs)  90.8 60 15 240 

Hierarchical Reinforcement Learning (HRL) 92 48 9 190 

Attention Mechanism-based Networks 94.2 50 13 210 

AVj 92.40000 51.33333 11.16667 206.66667 
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Table 1 shows compare above values. Accuracy: Attention Mechanism-based Networks have the highest accuracy 

at 94.2%, while GANs have the lowest at 90.8%.  Computational Cost (FLOPs): GANs have the highest 

computational cost at 60 FLOPs, while GNNs have the lowest at 45 FLOPs. Number of Parameters: GANs have 

the highest number of parameters at 15, while GNNs and HRL have the lowest at 8 and 9 respectively. Memory 

Footprint: GANs have the highest memory footprint at 240 MB, while GNNs have the lowest at 180 MB. Attention 

Mechanism-based Networks exhibit the highest accuracy, but with a moderate computational cost and memory 

footprint. GNNs have relatively lower computational cost and memory footprint compared to others, while still 

maintaining a high accuracy level. 

 
FIGURE 1. Evolution of structured deep visual models in robot manipulation 

Figure 1illustrate graphical representation of Evolution of structured deep visual models in robot manipulation 

TABLE 2. Positive Distance from average (PDA) 

Positive Distance from Average (PDA) 

0.00 0.00 0.10 0.03 

0.00 0.00 0.28 0.13 

0.01 0.07 0.00 0.00 

0.00 0.17 0.00 0.00 

0.00 0.00 0.19 0.08 

0.02 0.00 0.00 0.00 

Table 2 shows the positive distance from the average Convolution Neural Networks (CNNs): The NDA values 

for CNNs across different categories are 0.00000 for the first category, 0.02597 for the second category, and 

0.00000 for the third and fourth categories. This suggests that CNNs perform very close to the average in the 

second category, while they perform similarly to the average in the first and third categories, and exceptionally 

well (with 0 distance from the average) in the fourth category. Graph Neural Networks (GNNs): For GNNs, the 

NDA values are 0.00758 for the first category, 0.12338 for the second category, and 0.00000 for the third and 

fourth categories. This indicates that GNNs perform slightly better than average in the first category, significantly 

better than average in the second category, and on par with the average in the third and fourth categories. Recurrent 

Neural Networks (RNNs): The NDA values for RNNs are 0.00000 for the first and third categories, and 0.07463 

for the second category, and 0.06452 for the fourth category. This implies that RNNs perform exactly at the 

average level in the first and third categories, slightly below average in the second category, and moderately above 

average in the fourth category. Generative Adversarial Networks (GANs): GANs exhibit NDA values of 0.01732 

for the first category, 0.00000 for the second category, 0.34328 for the third category, and 0.16129 for the fourth 

category. This suggests that GANs perform slightly better than average in the first category, exactly at the average 

level in the second category, significantly below average in the third category, and moderately above average in 

the fourth category. Hierarchical Reinforcement Learning (HRL): For HRL, the NDA values are 0.00433 for the 
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first category, 0.06494 for the second category, and 0.00000 for the third and fourth categories. This indicates that 

HRL performs slightly better than average in the first category, better than average in the second category, and at 

the average level in the third and fourth categories. Attention Mechanism-based Networks: The NDA values for 

attention mechanism-based networks are 0.00000 for the first category, 0.02597 for the second category, 0.16418 

for the third category, and 0.01613 for the fourth category. This suggests that these networks perform exactly at 

the average level in the first category, slightly better than average in the second category, significantly better than 

average in the third category, and moderately better than average in the fourth category. 

TABLE 3. Negative Distance from average (PDA) 

 Negative Distance from Average (NDA) 

0.00000 0.02597 0.00000 0.00000 

0.00758 0.12338 0.00000 0.00000 

0.00000 0.00000 0.07463 0.06452 

0.01732 0.00000 0.34328 0.16129 

0.00433 0.06494 0.00000 0.00000 

0.00000 0.02597 0.16418 0.01613 

 

Table 3 shows the negative distance from the average The NDA values represent how each type of neural network 

deviates from the average in each category. A value of 0.00000 indicates that the network's performance is exactly 

at the average level in that category. Positive values indicate that the network performs better than the average in 

that category. Negative values indicate that the network performs worse than the average in that category. CNNs 

perform slightly above average in the second category (0.02597). GNNs perform significantly above average in 

the second category (0.12338) and moderately above average in the first category (0.00758).RNNs perform 

moderately above average in the fourth category (0.06452).GANs perform significantly below average in the third 

category (-0.34328) and moderately below average in the fourth category (-0.16129).HRL performs moderately 

above average in the second category (0.06494) and slightly above average in the first category 

(0.00433).Attention Mechanism-based Networks perform significantly above average in the third category 

(0.16418) and moderately above average in the fourth category (0.01613). These values provide insight into how 

each type of neural network compares to the average performance across different categories. 

TABLE 4. Weighted PDA (SPi) 

Weighted  PDA SPi 

0.00027 0.00000 0.02612 0.00806 0.03445 

0.00000 0.00000 0.07090 0.03226 0.10315 

0.00216 0.01786 0.00000 0.00000 0.02002 

0.00000 0.04221 0.00000 0.00000 0.04221 

0.00000 0.00000 0.04851 0.02016 0.06867 

0.00487 0.00000 0.00000 0.00000 0.00487 

 

Table 4 shows explanation of weighted PDA. Higher values suggest that the corresponding model has a higher 

contribution to the detection alarm probability. For example:  For CNNs, the highest contribution to the detection 

alarm probability comes from the third feature (0.02612), followed by the fifth feature (0.03445). For GNNs, the 

highest contribution comes from the third feature (0.07090), followed by the fifth feature (0.10315).  For RNNs, 

the highest contribution comes from the first feature (0.00216), followed by the second feature (0.01786). SPi: 

This seems to be another set of weighted values t seems these values might represent the weighted contribution 

of each model to some measure denoted by SPi. Similarly, higher values indicate a higher contribution of the 

corresponding model to SPi. For example: For CNNs, the highest contribution to SPi comes from the third feature 

(0.02612), followed by the fourth feature (0.00806). For GNNs, the highest contribution comes from the fifth 

feature (0.10315), followed by the third feature (0.07090). For RNNs, the highest contribution comes from the 

fifth feature (0.02002), followed by the first feature (0.00216).   
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TABLE 5. Weighted NDA (SNi) 

Weighted  NDA SNi 

0.00000 0.00649 0.00000 0.00000 0.00649 

0.00189 0.03084 0.00000 0.00000 0.03274 

0.00000 0.00000 0.01866 0.01613 0.03479 

0.00433 0.00000 0.08582 0.04032 0.13047 

0.00108 0.01623 0.00000 0.00000 0.01732 

0.00000 0.00649 0.04104 0.00403 0.05157 

 

Table 5 shows explanation of weighted NDA. Weighted NDA (Negative Detection Alarm): This could represent 

the weighted contribution of each model towards the overall negative detection alarm, which might indicate the 

likelihood of not detecting an anomaly or event of interest. Higher values suggest that the corresponding model 

has a higher contribution to the negative detection alarm. For example: For CNNs, the highest contribution to the 

negative detection alarm comes from the second feature (0.00649). For GNNs, the highest contribution comes 

from the fifth feature (0.03274), followed closely by the second feature (0.03084). For RNNs, the highest 

contribution comes from the fifth feature (0.03479), followed by the third feature (0.01866). SNi: it seems these 

values might represent the weighted contribution of each model to some measure denoted by SNi. Similarly, 

higher values indicate a higher contribution of the corresponding model to SNi. For example: For CNNs, the 

highest contribution to SNi comes from the second feature (0.00649), followed by the fifth feature (0.00649). For 

GNNs, the highest contribution comes from the fifth feature (0.03274), followed by the second feature (0.03084). 

For RNNs, the highest contribution comes from the fifth feature (0.03479), followed by the third feature (0.01613). 

TABLE 6. Spi&Sni&ASI&Rank 

NSPi NSPi ASi Rank 

0.33401 0.95023 0.64212 3 

1.00000 0.74908 0.87454 1 

0.19410 0.73339 0.46374 4 

0.40917 0.00000 0.20459 6 

0.66569 0.86728 0.76649 2 

0.04721 0.60474 0.32598 5 

         

Table 6 shows the Evolution of structured deep visual models in robot manipulation final result of this paper the 

Attention Mechanism-based Networks is in 5th rank, Graph Neural Networks (GNNs) is in 1st rank, Hierarchical 

Reinforcement Learning (HRL) is in 2nd rank, Convolution Neural Networks (CNNs) is in 3rd rank, Generative 

Adversarial Networks (GANs) is in 6th rank, Recurrent Neural Networks (RNNs) is in 4thrank.  

 
FIGURE 2. Spi&Sni 
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Figure 2 shows the graphical representation Evolution of structured deep visual models in robot manipulation SPi 

refers to positive average value and SNi refers to negative average value.   

 
FIGURE 3. ASi 

Figure 3 shows the graphical representation of Evolution of structured deep visual models in robot manipulation 

ASi value. Calculate the average value for positive and negative values. Convolutional Neural Networks (CNNs) 

is 0.64212; Graph Neural Networks (GNNs) is 0.87454, Recurrent Neural Networks (RNNs) 0.46374, Generative 

Adversarial Networks (GANs) 0.20459, Hierarchical Reinforcement Learning (HRL) 0.76649, and Attention 

Mechanism-based Networks 0.32598.   

 
FIGURE.4 Ranks 

Figure 4 illustrate graphical representation of Graph Neural Networks (GNNs) is got the first rank where as 

Generative Adversarial Networks (GANs) is having the lowest rank.  

4. CONCLUSION 

The evolution of structured deep visual models in robot manipulation signifies a pivotal advancement in robotics 

research. By integrating deep learning methodologies with structured representations, such as graphs or 

hierarchical architectures, these models exhibit enhanced interpretability and resilience in intricate manipulation 

tasks. This evolution has empowered robots to perceive and engage with their surroundings more intelligently, 

resulting in heightened performance and adaptability across diverse real-world scenarios. Moreover, the symbiosis 

between structured representations and deep learning fosters efficient knowledge transfer and generalization 

capabilities, facilitating the seamless application of learned insights to novel tasks. As a result, these sophisticated 

models not only contribute to the refinement of robotic manipulation techniques but also hold immense promise 
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for revolutionizing various domains, including manufacturing, healthcare, and service industries, by enabling the 

development of more versatile and autonomous robotic systems capable of tackling complex challenges with 

precision and efficiency. 
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