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 Abstract: Particulate matter is a significant atmospheric pollutant that poses substantial health risks. 

Reliable and precise air quality forecasts are essential for the timely implementation of preventive measures 

to minimize these health risks. This study examines the effectiveness of various statistical methods in 

forecasting long-term trends of particulate matter (PM2.5) pollution. Using historical data from 

government-operated monitoring stations in Delhi, the research applies a range of time-series analysis 

techniques to identify patterns and predict future pollution levels. The analysis reveals that the Seasonal 

Autoregressive Integrated Moving Average model with exogenous variables (SARIMAX) significantly 

outperforms other models, such as ARIMA, SARIMA, and ARIMA with exogenous variables (ARIMAX). 

The exceptional performance of SARIMAX demonstrates its potential as a robust early warning system, 

which can facilitate the implementation of preventive measures to mitigate the impact of pollution on public 

health. This emphasizes the model's significance in supporting proactive environmental and health policy 

strategies. 
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1. INTRODUCTION 

The rapid urbanization and development of cities pose significant challenges, leading to population surges and 

inadequate public services. This uncontrolled urban expansion in developing countries pressures natural resources, 

resulting in environmental degradation at multiple levels [1]. Among global environmental concerns, ambient 

(outdoor) air pollution is notably exacerbated by these unsustainable practices. Poor ambient air quality, due to 

increased levels of pollutants, is primarily attributed to anthropogenic emissions from vehicles, industry, 

construction, and domestic burning, though natural emissions also contribute [2], [3]. These sources release 

particulate matter (PM10, PM2.5) and gaseous pollutants like nitrogen and sulfur oxides, carbon monoxide, and 

ozone [4]. The concentrations of these pollutants are influenced by synoptic patterns and meteorological 

parameters [5]. 

Concerns about poor air quality in India have surged recently due to its adverse effects on human health, 

agricultural productivity, and the economy [6], [7]. India's rapid urban and industrial development has led to some 

of the world's most polluted air. With 34% of its 1.3 billion population living in urban areas, air quality is 

deteriorating rapidly [8], [9]. A study by [10] highlighted that over 70% of India's population is exposed to 

particulate concentrations exceeding National Ambient Air Quality Standards (NAAQS), contributing to 

increased mortality and morbidity, with approximately 0.7 million deaths annually linked to ambient air pollution. 

The economic impact of poor air quality accounts for about 1.4% of the GDP, including expenditures on health 

issues related to pollution [11]. 

Many metropolitan and Tier-I cities in India, such as Delhi, Kolkata, and Mumbai, are experiencing worsening 

air quality [12]. This deterioration is due to various factors, including vehicle exhaust emissions (VEEs), 

resuspended dust, biomass burning, and industrial pollution [13], [14]. Consequently, these cities are struggling 

to meet health-based air quality standards. Regularly examining changes in air pollutant concentrations is essential 

to develop reliable solutions to mitigate and assess the health and environmental risks associated with poor air 

quality in urban areas [15]. Predicting and forecasting air pollution is crucial not only for enabling residents to 
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plan their daily activities and avoid high-pollution areas but also for supporting urban planning and public health 

strategies [16]. Time series modeling is pivotal in this process, offering benefits such as data cleaning, 

understanding, and forecasting. As a vital quantitative technique, time series forecasting involves collecting and 

analyzing historical data to develop models that predict future scenarios [17]. Given its significance, research on 

pollution forecasting has become a critical area in environmental protection, aiming to evaluate and implement 

necessary measures to mitigate the long-term effects of pollution [18]. 

This research addresses significant gaps in predicting and forecasting PM2.5 levels in Delhi by conducting a 

comparative analysis of traditional (ARIMA & SARIMA) and advanced (ARIMAX & SARIMAX) time series 

models. The study explores spatio-temporal trends in PM2.5 data from 39 monitoring stations (2019-2023). It 

evaluates model accuracy with metrics like RMSE and R-squared, integrating a broad range of exogenous 

variables such as temperature, wind speed, rainfall, solar radiation, barometric pressure, and humidity. This 

comprehensive approach aims to improve predictive accuracy and provide actionable insights for policymakers 

and urban planners, enhancing air quality forecasting in megacities prone to pollution.  

2. METHODS 

A. Location Description: Delhi, situated at 28°34'N and 77°12'E, is India's capital city. As of the 2011 census, it 

had a population of 16.8 million and a growth rate of 1.92%, making it India's second-largest city by population. 

The city's climate is semi-arid and subtropical, with prevailing wind patterns mainly from the west and northwest. 

The average wind speed annually is between 0.9 to 2 m/s, according to [19]. Temperature-wise, Delhi has an 

average yearly temperature of 31.5°C. During the hot months from March to June, temperatures can soar up to 

45°C. In contrast, temperatures significantly drop during the winter months of December and January, which helps 

in trapping emissions and raising pollution levels [20]. The monsoon season, typically from July to September, 

brings most of Delhi's rainfall, significantly influencing the city's annual weather patterns.  

 

FIGURE 1. The location of Delhi city 

B. Data Collection and Pre-Processing: Daily PM2.5 concentration data were collected from the Central Pollution 

Control Board's digital repository (http://app.cpcbccr.com/ccr/#/login) for 39 monitoring stations across Delhi. 

This dataset covers five years, starting January 1, 2019, and ending December 31, 2023. PM2.5 levels are measured 

using gravimetric, TEOM, or beta attenuation methods at stations managed by the CPCB, IMD, and DPCC. These 

measurements adhere to the [21] for ambient air pollutant measurement. Regular calibration of the monitors by 

the managing authorities ensures data reliability [3], [22]. 

http://app.cpcbccr.com/ccr/#/login
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Meteorological data, including daily measurements of temperature, humidity, wind speed, rainfall, solar radiation, 

and barometric pressure, were also sourced from the same CPCB repository for the same stations. These 

instruments are regularly calibrated according to guidelines to ensure data accuracy. Data pre-processing has been 

conducted to improve the quality and usability of this information. 

To ensure robust analysis, we pre-processed air quality and meteorological data from 39 Delhi stations, spanning 

2019 to 2023. We eliminated stations with less than 75% data completeness, interpolated isolated missing values, 

and applied mean imputation for continuous gaps using historical seasonal patterns. Meteorological data from 

nearby stations filled gaps, and monthly data aggregation allowed for effective trend analysis and model 

development 

C. Data Analysis: We analysed PM2.5 concentrations at various Delhi stations from 2019 to 2023 using both 

traditional and advanced time series models to adapt to the dynamic air quality data. Traditional models like 

ARIMA and SARIMA were used to identify data patterns, while ARIMAX and SARIMAX incorporated 

meteorological variables like temperature, wind speed, and humidity to assess external effects on PM2.5 levels 

[23], [24].  

Before model application, we confirmed data stationarity using the Augmented Dickey-Fuller (ADF) test, as 

recommended by [25]. This step ensured the data's mean, variance, and covariance were constant over time, a 

crucial factor since non-stationary data can lead to inaccurate time series analysis results. 

Our study employed ARIMA and SARIMA models to predict PM2.5 levels, adapting them to capture both the 

typical and seasonal variations in air quality data. These models were fine-tuned using the auto_arima function 

from the pmdarima library, optimizing parameter selection based on the Akaike Information Criterion (AIC) to 

ensure the best model fit [26]. 

ARIMA, widely used for forecasting stationary time series, combines three elements: autoregressive (AR), 

differencing (I), and moving average (MA). The AR component uses previous values to predict future ones with 

p as the number of lags. Differencing, denoted by d, stabilizes the series, while MA, represented by q, models the 

error using past forecast errors. 

(1 −  ∑ ∅𝑖𝐿
𝑖

𝑝

𝑖=1

) (1 − 𝐿)𝑑𝑌𝑡 =  (1 + ∑ 𝜃𝑗𝐿𝑗

𝑞

𝑗=1

) 𝜀𝑡 

where ϕi and θj  are the coefficients for the AR and MA parts, L is the lag operator, Yt is time series data at time 

t, and ϵt is the noise [27]. Other models incorporated in the study are extension of the ARIMA model which 

induces seasonality (SARIMA) as well as exogenous features (ARIMAX and SARIMAX) 

To broaden our analysis, we integrated ARIMAX and SARIMAX models, which included meteorological factors 

as exogenous variables, enhancing the predictive accuracy by accounting for external environmental impacts. 

Parameter optimization was achieved using the auto_arima function, with additional tests on variable 

combinations to pinpoint those most impactful on model performance. Our comprehensive and methodical 

approach in fine-tuning the models allowed us to leverage time series analysis effectively, providing reliable 

forecasts of PM2.5 concentrations. This helped us not only understand but also predict air quality trends, supporting 

urban air quality management strategies. 

In the final analysis phase, we assessed the models’ performance using R-squared and Root Mean Square Error 

(RMSE) across each station to identify the most accurate models. The best models were then applied to test 

datasets to validate their effectiveness in real-world scenarios, proving essential for enhancing air quality 

management [28], [29] 

 

 

 



Divyansh Sharma  et.al/ /REST Journal on Data Analytics and Artificial Intelligence 3(3), September 2024, 11-19. 

 

Copyright@ REST Publisher                                                                                                                                                      14 
 

 

FIGURE 2. Model development steps. 

3. RESULT AND DISCUSSION 

We conducted an extensive comparative study of four time series models—ARIMA, ARIMAX, SARIMA, and 

SARIMAX—to predict PM2.5 levels at the air quality monitoring network in Delhi from 2019 to 2023. Utilizing 

detailed datasets, we evaluate each model's effectiveness using the Root Mean Square Error (RMSE) and R-

squared (R²) metrics, which measure the accuracy of the predictions and the variance explained by the models, 

respectively. 

 
FIGURE 3. Overall RMSE of Time Series Models for PM2.5 at Delhi Monitoring Stations. 
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FIGURE 4. Overall R2_Score of Time Series Models for PM2.5 at Delhi Monitoring Stations 

The distribution of RMSE and R² values for each model type, as visualized in the box plots (Figure 3 & 4), reveals 

significant insights into their predictive capabilities. The SARIMAX model generally exhibited the most favorable 

performance, achieving the lowest RMSE values across most stations, suggesting a robust fit to the data. 

Conversely, the ARIMA model frequently showed higher RMSE values, indicating a less accurate fit. This pattern 

was consistent with the R-squared values, where SARIMAX models also tended to explain a higher variance, 

demonstrating superior predictive power compared to the ARIMA models. 

 
FIGURE 5. RMSE Scores for Time Series Models at Each Station 
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Detailed examination of model performance at each station further highlighted the consistency of SARIMAX 

models in achieving lower RMSE and higher R² values. For instance, at the Alipur station, the SARIMAX model 

produced an RMSE of 9.49 and an R² of 0.98, markedly outperforming other models. Similarly, at the Vivek 

Vihar, which is critical given its traffic density, the SARIMAX model not only achieved the RMSE of 12.25 but 

also managed an R² of 0.97, underscoring its effectiveness in high pollution areas. 

 

FIGURE 6. R2 Scores for Time Series Models at Each Station 

The integration of exogenous variables in the ARIMAX and SARIMAX models significantly impacted their 

performance. Variables such as ambient temperature ('amb_temp'), wind speed ('wind_spd'), and rainfall were 

frequently used across stations, enhancing model predictions. The station-specific results illustrate that the 

inclusion of variables like solar radiation ('sol_rad') and barometric pressure ('bar_press') in the SARIMAX model 

notably improved its predictive accuracy at stations like Jawaharlal Nehru Stadium and Wazirpur, respectively. 

Our evaluation revealed clear differences in performance among traditional (ARIMA and SARIMA) versus 

advanced (ARIMAX and SARIMAX) time series models for predicting PM2.5 levels. Traditional models 

effectively identified seasonal trends but fell short in accounting for external factors that critically affect pollution 

levels. This was evident from their generally higher RMSE and lower R² values. On the other hand, ARIMAX 

and SARIMAX models incorporated crucial meteorological data as exogenous variables, markedly improving 

their predictive capabilities. The SARIMAX model, in particular, displayed enhanced accuracy, proving highly 

effective in managing complex urban air quality scenarios and deepening our comprehension of air pollution 

dynamics in large cities like Delhi. 

This study not only addresses a significant gap in environmental modeling but also lays a methodological 

foundation for future research, aiming to enhance the predictive accuracy and real-world utility of air quality 

forecasts in urban areas. It recommends expanding the integration of broader datasets, including real-time traffic, 

biomass burning, construction activities, and industrial outputs, to refine predictions. Additionally, it suggests 

enhancing collaborations with local communities and stakeholders, aligning scientific efforts with urban 

governance to create more sustainable, health-conscious urban environments. 
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TABLE 1. Station Specific Optimal Time Series Model 

 

 

 

Station Name Best Model

Model 

Paramete Exogenous Features

Alipur SARIMAX ((0, 1, 1), ('wind_spd', 'rainfall')

Anand_Vihar SARIMA

(0, 1, 

0)x(1, 0, 1, None

Ashok_Vihar SARIMAX

((0, 1, 0), 

(1, 0, 0, ('amb_temp', 'rainfall')

Aya_Nagar SARIMAX

((1, 1, 2), 

(1, 0, 2, 

('amb_temp', 'wind_spd', 

'sol_rad')

Bawana SARIMA (0, 1, None

CRRI_Mathura_Roa

d SARIMA

(0, 1, 

0)x(2, 0, 0, 

12) None

DTU ARIMAX (0, 1, 1) ('amb_temp',)

Dr_Karni_Singh SARIMAX

((2, 1, 2), 

(1, 0, 1, 

('amb_temp', 'rel_hum', 

'wind_spd')

Dwarka_Sec_8 SARIMA

(1, 1, 

0)x(2, 0, 1, None

IHBAS_Dilshad_Gar

den SARIMAX

((1, 0, 0), 

(2, 0, 0, 

12))

('amb_temp', 'rainfall', 

'bar_press')

ITO SARIMAX

((0, 1, 1), 

(1, 0, 1, 

('amb_temp', 'wind_spd', 

'rainfall', 'sol_rad')

Jahangirpuri SARIMAX

((3, 1, 0), 

(2, 1, 1, ('wind_spd', 'rainfall')

Jawaharlal_Nehru_S

tadium SARIMAX

((0, 1, 0), 

(1, 0, 2, 

12)) ('rel_hum', 'sol_rad')

Lodhi_Road_IMD SARIMAX

((0, 1, 0), 

(1, 0, 2, 

('rainfall', 'sol_rad', 

'bar_press')

Major_Dhyan_Chan

d_National_Stadium SARIMAX

((0, 1, 1), 

(2, 1, 0, 

12))

('amb_temp', 'rel_hum', 

'wind_spd', 'rainfall', 

'sol_rad')

Mandir_Marg SARIMAX

((0, 1, 0), 

(2, 0, 0, ('rel_hum', 'sol_rad')

Mundka SARIMAX ((2, 1, 2), ('rel_hum', 'sol_rad')

NSIT_Dwarka ARIMAX (0, 1, 1)

('amb_temp', 'rel_hum', 

'wind_spd', 'rainfall', 

'sol_rad')

Najafgarh SARIMAX

((3, 1, 1), 

(1, 0, 1, ('sol_rad',)

Narela SARIMAX

((0, 1, 2), 

(0, 1, 1, 

('amb_temp', 'wind_spd', 

'rainfall')

Nehru_Nagar SARIMAX

((2, 1, 2), 

(2, 0, 0, ('rainfall', 'sol_rad')

North_Campus_DU SARIMAX

((2, 1, 0), 

(2, 1, 0, ('rel_hum', 'rainfall')

Okhla_phase_2 SARIMAX

((0, 1, 1), 

(2, 0, 1, 

('amb_temp', 'sol_rad', 

'bar_press')

PUSA_DPCC SARIMA

(0, 1, 

0)x(1, 0, 2, None

PUSA_IMD SARIMAX

((0, 1, 0), 

(1, 0, 2, ('amb_temp', 'rainfall')

Patparganj SARIMAX

((2, 1, 0), 

(2, 1, 1, ('bar_press',)

Punjabi_Bagh SARIMAX

((0, 1, 0), 

(1, 0, 1, 

('amb_temp', 'rel_hum', 

'rainfall', 'bar_press')

RK Puram SARIMA (0, 1, None

Rohini SARIMAX ((0, 1, 1), ('rainfall',)

Shadipur SARIMAX

((1, 0, 1), 

(1, 0, 1, 

('wind_spd', 'rainfall', 

'sol_rad', 'bar_press')

Sirifort SARIMAX ((0, 0, 2), ('wind_spd',)

Sonia_Vihar SARIMAX

((0, 1, 0), 

(2, 1, 0, 

('wind_spd', 'rainfall', 

'sol_rad')

Sri_Aurobindo_Mar

g SARIMAX

((0, 1, 0), 

(1, 0, 2, 

12))

('amb_temp', 'wind_spd', 

'bar_press')

Vivek_vihar SARIMAX

((0, 1, 1), 

(1, 0, 2, 

('amb_temp', 'wind_spd', 

'sol_rad')

Wazirpur SARIMAX

((0, 1, 1), 

(2, 0, 0, 

('rel_hum', 'wind_spd', 

'rainfall')
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4. CONCLUSION 

This detailed analysis across multiple time series models and a variety of exogenous factors underlines the 

nuanced understanding required to effectively predict PM2.5 levels in urban settings like Delhi. The SARIMAX 

model, with its ability to incorporate external influences, stands out as particularly effective, offering significant 

potential for policymakers and environmental scientists in crafting more accurate air quality forecasts and better-

informed pollution control strategies. 
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