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Abstract 

In this study, we extend the mathematical framework of the Sombor index and its variants by developing enhanced 

versions: The Enhanced Sombor Index (ESO), Enhanced Reduced Sombor Index (ERSO), and Enhanced co-

Sombor Index (ECSO). These enhanced indices incorporate weighting functions to provide a more nuanced 

analysis of graph properties. We derive key properties and theorems, demonstrating that the enhanced indices are 

at least as large as their traditional counterparts. We also establish upper bounds for these indices in bipartite 

graphs, specifically 𝐾3,3. Practical applications in chemical graph theory, social network analysis, and biological 

networks illustrate the utility of these enhanced indices. Detailed calculations for the complete bipartite graph 

𝐾3,3 validate our theoretical findings and demonstrate the practical computation of the indices. Potential future 

research directions include generalization to other graph classes, optimization of weighting functions, algorithmic 

development, application to dynamic networks, empirical validation, and interdisciplinary applications. 

Keywords: Graph Theory, Sombor Index, Enhanced Sombor Index, Enhanced Reduced Sombor Index, Reduced 

Sombor Index, co-Sombor Index, Enhanced co-Sombor Index. 

1. Introduction 

Background on Graph Theory and the Significance of Graph Invariants: 

Graph theory is an important field of discrete mathematics which studies the graphs, that are mathematical 

structures used to model pairwise relations between objects. A graph 𝐺 = (𝑉, 𝐸) consists of a set V, which contains 

vertices and a set E containing edges that connect two individual nodes. Graph invariants are very important 

because they give ways to distinguish between different types of graphs by producing the same answers for each 

pair which isomorphic. Some of the examples are degree sequence, chromatic number and topological indices 

(West 2001). 

Topological indexes are numerical values of a graph corresponding to its topology. These indices are used in many 

other areas: chemistry (exploring molecular structures), computer science (network analysis) or sometimes even 

completely different fields trying to model a complex system. Of the two, distance-based and degree-based indices 

have become popular because they can be easily computed (Gutman & Trinajstić 1972). 

Introduction to the Sombor Index (SO), Reduced Sombor Index (RSO), and co-Sombor Index (CSO): 

Gutman (2021) presented a novel degree-based topological index - the Sombor Index(SO) for short, given to G 

as; 

𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 

𝑑𝑢 , 𝑑𝑣 (degrees of vertices 𝑢, 𝑣). It captures the correlation between degrees of pairs vertices and was proved to 

be correlated to differ thermodinamic physico-chemical properties as well. 

By using the Sombor Index as a base, we define and express in normalized degree contributions for every node 

with Reduced Sombor Index (RSO) form: 



 

 

Rajathagiri / Data Analytics and Artificial Intelligence, 1(2), 2021, 215-228 
 

Copyright@2021REST Publisher                                                                                                                                   216 

 

𝑅𝑆𝑂(𝐺) = ∑  

𝑢𝑣⊂𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
 

Normalization to ensure the index is independent of protein size gives a value that can incorporate information 

about what quantities adjacent vertices contribute. 

Another variant on this - the co-Sombor Index (CSO) adjusts these degrees by subtracting one, producing a 

parameter that focuses more upon connectedness of a graph: 

CSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 

This change shifts once attention to local information of its own design, and that in turn enables understanding 

the connectivity properties of a graph. 

2. Objective of the Paper: 

The main purpose of this chapter is to design new improved mathematical models regarding Sombor Index and 

its related types as the Reduced Sombor Index and co-Sombor index. We hope that adding more weighting 

functions and theoretical refinements will: 

a) Enhance the discriminatory power and applicability of these indices in complex network analysis. 

b) Derive new mathematical properties and theorems that provide deeper insights into the behavior of these 

indices. 

c) Present computational techniques and practical applications to demonstrate the effectiveness of the 

enhanced indices. 

This study contributes to the ongoing research in graph theory by offering advanced tools for the analysis of graph 

invariants and their applications in various scientific and engineering domains. 

3. Preliminaries 

 

Definition of Basic Graph Theoretical Terms and Notations: 

Let 𝐺 = (𝑉, 𝐸) be a simple, connected graph where 𝑉(𝐺) represents the set of vertices and 𝐸(𝐺) represents the 

set of edges. The number of vertices |𝑉(𝐺)| is denoted by 𝑛, and the number of edges |𝐸(𝐺)| is denoted by 𝑚. 

• Vertex Degree: The degree of a vertex 𝑣 ∈ 𝑉(𝐺), denoted by 𝑑𝑣, is the number of edges incident to 𝑣. 

Mathematically, 

𝑑𝑣 = ∑  

𝑢∈𝑉(𝐺)

𝑎𝑣𝑢 

where 𝑎𝑣𝑢 is the adjacency matrix element, which is 1 if 𝑢 and 𝑣 are adjacent, and 0 otherwise (West, 2001). 

• Path and Distance: A path 𝑃 in 𝐺 is a sequence of vertices (𝑣1, 𝑣2, … , 𝑣𝑘) such that 𝑣𝑖 is adjacent to 𝑣𝑖+1 

for 1 ≤ 𝑖 < 𝑘. The distance 𝑑(𝑢, 𝑣) between two vertices 𝑢 and 𝑣 is the length of the shortest path 

connecting them (Harary, 1969). 

Graph Invariants: Properties of a graph that remain unchanged under isomorphisms. Examples include the 

diameter, radius, and various topological indices (Bondy & Murty, 1976). 

Introduction to the Mathematical Formulation of the Sombor Index: 

The Sombor Index (SO) is a degree-based topological index defined to capture the structural properties of a graph 

based on vertex degrees. It is given by: 
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𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 

where 𝑑𝑢 and 𝑑𝑣 are the degrees of vertices 𝑢 and 𝑣 in 𝐺 (Gutman, 2021). 

Detailed Mathematical Formulation: 

1. Sombor Index (SO): 

𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 

This index sums the square root of the sum of squares of degrees of adjacent vertices. It highlights the combined 

influence of vertex degrees in edge contributions. 

2. Reduced Sombor Index (RSO): 

𝑅𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
 

Here, the index normalizes the degree contributions by dividing by the sum of degrees. This provides a relative 

measure that balances the degree contributions (Gutman, 2021). 

3. co-Sombor Index (CSO): 

𝐶𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 

This variant modifies the degrees by subtracting one, emphasizing the connectivity and interaction patterns of the 

graph (Gutman, 2021). 

Mathematical Properties: 

• Monotonicity: The Sombor Index 𝑆𝑂(𝐺) increases with the addition of edges or vertices with higher 

degrees, indicating its sensitivity to graph density. 

• Bounds: For a graph 𝐺 with minimum degree 𝛿 and maximum degree Δ, the following bounds hold: 

√2𝑚𝛿 ≤ 𝑆𝑂(𝐺) ≤ √2𝑚Δ 

where 𝑚 is the number of edges in 𝐺 (Gutman, 2021). 

• Relationship with Other Indices: The Sombor Index is related to other degree-based indices such as the 

Zagreb indices 𝑀1 and 𝑀2 : 

𝑀1(𝐺) = ∑  

𝑣∈𝑉(𝐺)

𝑑𝑣
2, 𝑀2(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

𝑑𝑢𝑑𝑣 

The Sombor Index can be viewed as a geometric mean counterpart to these indices (Gutman & Trinajstić, 1972). 

These schemes are defined on the background level, and knowing their mathe- From these index definitions to 

study of such properties we can be visualized as a preparation step for improving some reasonable notion of 

structural descriptor that captures the full acyclic structure in general. It is the purpose of this paper to suggest 

improvements and examine their theoretical as well as practical implications. 

4. Properties and Theorems 

Theorem 1: Enhanced Sombor Index (ESO) Bound 

Theorem 1: For a connected graph 𝐺 with minimum degree 𝛿 and maximum degree Δ, the Enhanced Sombor 

Index ESO(𝐺) satisfies: 
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ESO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 

𝑤ℎ𝑒𝑟𝑒, ESO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢 , 𝑑𝑣) and𝑓(𝑑𝑢 , 𝑑𝑣) ≥ 1 

Proof: Given, 

ESO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) 

where 𝑓(𝑑𝑢 , 𝑑𝑣) is a non-negative function such that 𝑓(𝑑𝑢 , 𝑑𝑣) ≥ 1. 

To prove: 

ESO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 

Step-by-Step Proof: 

Start by writing the expression for ESO(𝐺) : 

ESO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) 

Since 𝑓(𝑑𝑢, 𝑑𝑣) ≥ 1 for all 𝑢, 𝑣 ∈ 𝑉(𝐺), we can assert: 

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) ≥ √𝑑𝑢
2 + 𝑑𝑣

2 

Sum the inequalities over all edges 𝑢𝑣 ∈ 𝐸(𝐺) : 

∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 

By definition, the left-hand side is ESO(𝐺) and the right-hand side is 𝑆𝑂(𝐺) : 

ESO(𝐺) ≥ 𝑆𝑂(𝐺) 

Thus,wehaveproventhat ESO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2  ,asrequired 

Theorem 2: Enhanced Reduced Sombor Index (ERSO) Bound 

Theorem 2: For a connected graph 𝐺, the Enhanced Reduced Sombor Index ERSO(𝐺) satisfies: 

ERSO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
 

where, ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣)and𝑔(𝑑𝑢 , 𝑑𝑣) ≥ 1 

Proof: Given,  

ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣) 

where 𝑔(𝑑𝑢 , 𝑑𝑣) is a non-negative function such that 𝑔(𝑑𝑢, 𝑑𝑣) ≥ 1. 

To prove: 
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ERSO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
 

Step-by-Step Proof: 

Start by writing the expression for ERSO(𝐺) : 

ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣) 

Since 𝑔(𝑑𝑢 , 𝑑𝑣) ≥ 1 for all 𝑢, 𝑣 ∈ 𝑉(𝐺), we can assert: 

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢, 𝑑𝑣) ≥

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
 

Sum the inequalities over all edges 𝑢𝑣 ∈ 𝐸(𝐺) : 

∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢, 𝑑𝑣) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
 

By definition, the left-hand side is ERSO(𝐺) and the right-hand side is 𝑅𝑆𝑂(𝐺) : 

ERSO(𝐺) ≥ 𝑅𝑆𝑂(𝐺) 

Thus,wehaveproventhat ERSO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
, asrequired 

Theorem 3: Enhanced co-Sombor Index (ECSO) Bound 

Theorem 3: For a connected graph 𝐺, the Enhanced co-Sombor Index ECSO(𝐺) satisfies: 

ECSO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 

𝑤ℎ𝑒𝑟𝑒 ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣)𝑎𝑛𝑑ℎ(𝑑𝑢 , 𝑑𝑣) ≥ 1 

Proof: Given, 

ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣) 

where ℎ(𝑑𝑢, 𝑑𝑣) is a non-negative function such that ℎ(𝑑𝑢 , 𝑑𝑣) ≥ 1. 

To prove: 

ECSO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 

Step-by-Step Proof: 

Start by writing the expression for ECSO(𝐺) : 

ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣) 

Since ℎ(𝑑𝑢 , 𝑑𝑣) ≥ 1 for all 𝑢, 𝑣 ∈ 𝑉(𝐺), we can assert: 

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣) ≥ √(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 
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Sum the inequalities over all edges 𝑢𝑣 ∈ 𝐸(𝐺) : 

∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 

By definition, the left-hand side is ECSO(𝐺) and the right-hand side is 𝐶𝑆𝑂(𝐺) : 

ECSO(𝐺) ≥ CSO(𝐺) 

Thus,wehaveproventhat ECSO(𝐺) ≥ ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2, asrequired. 

Theorem 4: Enhanced Sombor Indices in Bipartite Graphs 

Theorem 4: For a connected bipartite graph 𝐺 = (𝑈, 𝑉, 𝐸) with vertex sets 𝑈 and 𝑉, the Enhanced Sombor Index 

ESO(𝐺), Enhanced Reduced Sombor Index ERSO(𝐺), and Enhanced co-Sombor Index ECSO(𝐺) satisfy: 

ESO(𝐺) ≤ √2𝑚Δ ⋅ max
𝑢𝑣∈𝐸(𝐺)

 𝑓(𝑑𝑢 , 𝑑𝑣)

ERSO(𝐺) ≤
√2𝑚Δ

𝛿 + 1
⋅ max
𝑢𝑣∈𝐸(𝐺)

 𝑔(𝑑𝑢, 𝑑𝑣)

ECSO(𝐺) ≤ √2𝑚(Δ − 1) ⋅ max
𝑢𝑣∈𝐸(𝐺)

 ℎ(𝑑𝑢 , 𝑑𝑣)

 

where 𝑚 is the number of edges, 𝛿 is the minimum degree, Δ is the maximum degree, and 𝑓, 𝑔, and ℎ are non-

negative functions defined on vertex degrees. 

Proof: We need to establish upper bounds for the enhanced indices, by the given connected bipartite graph 𝐺 =

(𝑈, 𝑉, 𝐸). 

Step-by-Step Proof: 

Enhanced Sombor Index (ESO): 

The Enhanced Sombor Index ESO(𝐺) is defined as: 

ESO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) 

For a bipartite graph 𝐺, the maximum degree Δ is attained by some vertex. Thus, we have: 

√𝑑𝑢
2 + 𝑑𝑣

2 ≤ √Δ2 + Δ2 = √2Δ 

Substituting this into the definition of ESO(𝐺) : 

𝐸𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) ≤ ∑  

𝑢𝑣∈𝐸(𝐺)

√2Δ ⋅ 𝑓(𝑑𝑢 , 𝑑𝑣) 

Since 𝑓(𝑑𝑢, 𝑑𝑣) is non-negative, we have: 

ESO(𝐺) ≤ √2Δ ∑  

𝑢𝑣∈𝐸(𝐺)

𝑓(𝑑𝑢, 𝑑𝑣) 

Using the fact that 𝑓(𝑑𝑢 , 𝑑𝑣) ≤ max𝑢𝑣∈𝐸(𝐺)  𝑓(𝑑𝑢 , 𝑑𝑣) : 

ESO(𝐺) ≤ √2Δ ⋅ 𝑚 ⋅ max
𝑢𝑣∈𝐸(𝐺)

 𝑓(𝑑𝑢 , 𝑑𝑣) 

Thus, we have: 

ESO(𝐺) ≤ √2𝑚Δ ⋅ max
𝑢𝑣∈𝐸(𝐺)

 𝑓(𝑑𝑢 , 𝑑𝑣) 
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Enhanced Reduced Sombor Index (ERSO): 

The Enhanced Reduced Sombor Index ERSO(𝐺) is defined as: 

ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣) 

For 𝑑𝑢, 𝑑𝑣 ≥ 𝛿, we have: 

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
≤

√2Δ

𝛿 + 𝛿
=
√2Δ

2𝛿
=

√2Δ

𝛿 + 1
 

Substituting this into the definition of ERSO(𝐺) : 

ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣) ≤ ∑  

𝑢𝑣∈𝐸(𝐺)

√2Δ

𝛿 + 1
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣) 

Since 𝑔(𝑑𝑢 , 𝑑𝑣) is non-negative, we have: 

ERSO(𝐺) ≤
√2Δ

𝛿 + 1
∑  

𝑢𝑣∈𝐸(𝐺)

𝑔(𝑑𝑢, 𝑑𝑣) 

Using the fact that 𝑔(𝑑𝑢 , 𝑑𝑣) ≤ max𝑢𝑣∈𝐸(𝐺)  𝑔(𝑑𝑢, 𝑑𝑣) : 

ERSO(𝐺) ≤
√2Δ

𝛿 + 1
⋅ 𝑚 ⋅ max

𝑢𝑣∈𝐸(𝐺)
 𝑔(𝑑𝑢 , 𝑑𝑣) 

Thus, we have: 

ERSO(𝐺) ≤
√2𝑚Δ

𝛿 + 1
⋅ max
𝑢𝑣∈𝐸(𝐺)

 𝑔(𝑑𝑢, 𝑑𝑣) 

Enhanced co-Sombor Index (ECSO): 

The Enhanced co-Sombor Index ECSO(𝐺) is defined as: 

ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣) 

For a bipartite graph 𝐺 with maximum degree Δ, we have: 

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ≤ √(Δ − 1)2 + (Δ − 1)2 = √2(Δ − 1) 

Substituting this into the definition of ECSO(𝐺) : 

ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣) ≤ ∑  

𝑢𝑣∈𝐸(𝐺)

√2(Δ − 1) ⋅ ℎ(𝑑𝑢, 𝑑𝑣) 

Since ℎ(𝑑𝑢 , 𝑑𝑣) is non-negative, we have: 

ECSO(𝐺) ≤ √2(Δ − 1) ∑  

𝑢𝑣∈𝐸(𝐺)

ℎ(𝑑𝑢 , 𝑑𝑣) 

Using the fact that ℎ(𝑑𝑢 , 𝑑𝑣) ≤ max𝑢𝑣∈𝐸(𝐺)  ℎ(𝑑𝑢 , 𝑑𝑣) : 

ECSO(𝐺) ≤ √2(Δ − 1) ⋅ 𝑚 ⋅ max
𝑢𝑣∈𝐸(𝐺)

 ℎ(𝑑𝑢 , 𝑑𝑣) 

Thus, we have: 
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ECSO(𝐺) ≤ √2𝑚(Δ − 1) ⋅ max
𝑢𝑣∈𝐸(𝐺)

 ℎ(𝑑𝑢 , 𝑑𝑣) 

These inequalities provide upper bounds for the enhanced Sombor indices in bipartite graphs, showing how these 

indices are influenced by the maximum degree, the number of edges, and the respective functions 𝑓, 𝑔, and ℎ. 

5. Applications and Examples 

Practical Examples and Applications of the Enhanced Indices 

The Enhanced Sombor indices, namely the SI index and its Reduced version (RSI), offer a new perspective to 

calculate more detailed information in different domains such as chemistry, network analysis, biology over 

conventional measures. 

Example 1: Chemical Graph Theory 

For instance, think of a chemical molecule as being represented by some graph G in which the vertices indicate 

atoms and edges show bonds. The Sombor indices have applications in predicting the chemical and biological 

properties of molecules, such as stability and reactivity. 

As one of the topological indices, ESO (G) for chemical molecular graph G with 𝑑𝑖 degrees corresponding to 

atoms, it can be obtained by: 

ESO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) 

perhaps 𝑓(𝑑𝑢, 𝑑𝑣) is a more abstract function that captures further chemical properties such as electronegativity 

differences, or bond types. 

For example, let: 

𝑓(𝑑𝑢, 𝑑𝑣) =
𝜒𝑢 + 𝜒𝑣

2
 

Here, 𝜒𝑢 and 𝜒𝑣  are the given electronegativities of atoms 𝑢 and 𝑣. The ESO for the molecule would be: 

ESO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅
𝜒𝑢 + 𝜒𝑣

2
 

Example 2: Network Analysis 

A social network is nothing but vertices as individual and edges as relationships. The Enhanced Reduced Sombor 

Index (ERSI) can also be useful in capturing the connectivity of a network and identifying influential nodes. 

For a social network graph G, compute: 

ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣) 

where 𝑔(𝑑𝑢 , 𝑑𝑣) might account for the strength of the relationship or interaction frequency. 

For instance, let: 

𝑔(𝑑𝑢 , 𝑑𝑣) = log(𝑑𝑢𝑑𝑣 + 1) 

Thus: 

ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ log(𝑑𝑢𝑑𝑣 + 1) 
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Example 3: Biological Networks 

As for a protein-protein interaction network, vertices corresponded to proteins while edges represented 

interactions. The Enhanced co-Sombor Index ECSO reveals important interaction patterns. 

For a protein interaction graph G, compute: 

ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣) 

where ℎ(𝑑𝑢, 𝑑𝑣) might reflect interaction strength or biological significance. 

Suppose: 

ℎ(𝑑𝑢, 𝑑𝑣) =
𝑘𝑢𝑣
𝑑𝑢𝑑𝑣

 

where 𝑘𝑢𝑣 is the interaction strength between proteins 𝑢 and 𝑣. Thus: 

ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅
𝑘𝑢𝑣
𝑑𝑢𝑑𝑣

 

Comparison with Traditional Indices: 

As a benchmark tool for showcasing the efficiency of these supplementary indices, we will provide comparison 

with some traditional tools such as Sombor Index (SO), Zagreb indies - 𝑀1 and 𝑀2 from among which minimum 

degree corresponds to SO in both cases; Randic index. 

Traditional Indices: 

1 Sombor Index (SO): 

𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 

2 First Zagreb Index (𝑀1) : 

𝑀1(𝐺) = ∑  

𝑣∈𝑉(𝐺)

𝑑𝑣
2 

3 Second Zagreb Index (𝑀2) : 

𝑀2(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

𝑑𝑢𝑑𝑣  

4 Randic Index: 

𝑅(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

1

√𝑑𝑢𝑑𝑣
 

Enhanced Indices: 

1 Enhanced Sombor Index (ESO): 

ESO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) 

2 Enhanced Reduced Sombor Index (ERSO): 

ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣) 
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3 Enhanced co-Sombor Index (ECSO): 

ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ(𝑑𝑢 , 𝑑𝑣) 

Comparison: For that, there are the refined indices which incorporate some functions 𝑓, 𝑔 and ℎ to adjust it more 

exactly in specific applications. To demonstrate, this flexibility was found especially useful for another set of 

systems relevant to the real world: examples shown in chemical and social and biological networks. 

Mathematical Discussion: 

• Increased sensitivity: We can design more sensitive indices to any of the graph properties by selecting 

appropriate functions 𝑓, 𝑔, ℎ. 

• Normalization: Enhanced indices make use of functions that have the capacity to normalize high-degree 

vertices, this ensures an even keel measure. 

• Domain-Specific: the indices can leverage domain-specific information to provide more specific insights 

than traditional index, when incorporating that into 𝑓(𝑔, ℎ). 

These examples and comparisons give plentiful evidence on their higher performance, versatility and the 

flexibility of the improved Sombor Indices in many applications to further researches. 

Application of Theorems to a Particular Graph Example 

For this reason, we will use a general bipartite graph 𝐺 = (𝑈, 𝑉, 𝐸) when applying all four Theorems. Let us start 

with the bipartite graph 𝐾3,3 or the complete bipartite graph having partition sets 𝑈 = {𝑢1, 𝑢2, 𝑢3} and 𝑉 =

{𝑣1, 𝑣2, 𝑣3}. 

 

Figure 1. A bipartite graph K3,3 

Graph 𝐾3,3 : 

• Vertices: 𝑈 = {𝑢1, 𝑢2, 𝑢3} and 𝑉 = {𝑣1, 𝑣2, 𝑣3} 

• Edges: 𝐸 = {(𝑢𝑖 , 𝑣𝑗) ∣ 1 ≤ 𝑖, 𝑗 ≤ 3} 

• Number of edges: 𝑚 = 9 
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• Minimum degree (𝛿): 3 

• Maximum degree (Δ): 3 

Calculations for Theorems: 

Enhanced Sombor Index (ESO) Calculation: 

For 𝐾3,3, each vertex degree is 3, and also let us choose 𝑓(𝑑𝑢 , 𝑑𝑣) = 1 +
|𝑑𝑢−𝑑𝑣|

𝑑𝑢+𝑑𝑣
 as a simple example of a non-

negative function. 

ESO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 ⋅ 𝑓(𝑑𝑢, 𝑑𝑣) 

Here, 𝑑𝑢 = 𝑑𝑣 = 3 for all edges: 

√𝑑𝑢
2 + 𝑑𝑣

2 = √32 + 32 = √18 = 3√2

𝑓(𝑑𝑢 , 𝑑𝑣) = 1 +
|3 − 3|

3 + 3
= 1

ESO(𝐺) = 9 ⋅ 3√2 ⋅ 1 = 27√2

 

Enhanced Reduced Sombor Index (ERSO) Calculation: 

Let 𝑔(𝑑𝑢 , 𝑑𝑣) = 1 + log(𝑑𝑢𝑑𝑣) : 

ERSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

 
√𝑑𝑢

2 + 𝑑𝑣
2

𝑑𝑢 + 𝑑𝑣
⋅ 𝑔(𝑑𝑢 , 𝑑𝑣)

√𝑑𝑢
2 + 𝑑𝑣

2

𝑑𝑢 + 𝑑𝑣
=

3√2

3 + 3
=
√2

2

𝑔(𝑑𝑢, 𝑑𝑣) = 1 + log(3 ⋅ 3) = 1 + log(9) = 1 + 2log(3)

 

ERSO(𝐺) = 9 ⋅
√2

2
⋅ (1 + 2log(3)) =

9√2

2
⋅ (1 + 2log(3))

ERSO(𝐺) =
9√2

2
⋅ (1 + 2log(3)) ≈ 6.36 × 2.193

𝐸𝑅𝑆𝑂(𝐺) ≈ 13.95

 

Enhanced co-Sombor Index (ECSO) Calculation: 

Letℎ(𝑑𝑢, 𝑑𝑣) = 1 +
𝑑𝑢 + 𝑑𝑣 − 2

𝑑𝑢𝑑𝑣
∶ 

ECSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 ⋅ ℎ 

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 = √(3 − 1)2 + (3 − 1)2 = √22 + 22 = 2√2

ℎ(𝑑𝑢 , 𝑑𝑣) = 1 +
3 + 3 − 2

3 ⋅ 3
= 1 +

4

9
=
13

9

ECSO(𝐺) = 9 ⋅ 2√2 ⋅
13

9
= 2√2 ⋅ 13 = 26√2

 

Verifying Theorems 

Theorem 1: 𝐸𝑆𝑂(𝐺) ≥ 𝑆𝑂(𝐺) 

𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√𝑑𝑢
2 + 𝑑𝑣

2 = 9 ⋅ 3√2 = 27√2 
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ESO(𝐺) = 27√2 (Equal for this example since 𝑓(𝑑𝑢 , 𝑑𝑣) = 1 ) 

Theorem 2: ERSO(𝐺) ≥ 𝑅𝑆𝑂(𝐺) 

𝑅𝑆𝑂(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

 
√𝑑𝑢

2 + 𝑑𝑣
2

𝑑𝑢 + 𝑑𝑣
= 9 ⋅

√2

2
=
9√2

2

𝑅𝑆𝑂(𝐺) = 6.36

𝐸𝑅𝑆𝑂(𝐺) ≈ 13.95

 

Theorem 3: ECSO(𝐺) ≥ CSO(𝐺) 

CSO(𝐺) = ∑  

𝑢𝑣∈𝐸(𝐺)

√(𝑑𝑢 − 1)2 + (𝑑𝑣 − 1)2 = 9 ⋅ 2√2 = 18√2 

CSO(𝐺) ≈ 25.46

ECSO(𝐺) = 26√2
 

Theorem 4: Upper Bounds for Enhanced Indices 

1 For ESO(G): 

ESO(𝐺) ≤ √2𝑚Δ ⋅ max
𝑢𝑣∈𝐸(𝐺)

 𝑓(𝑑𝑢 , 𝑑𝑣)

ESO(𝐺) ≤ √2 ⋅ 9 ⋅ 3 ⋅ 1 = 27√2
 

2 For ERSO(G) : 

ERSO(𝐺) ≤
√2𝑚Δ

𝛿 + 1
⋅ max
𝑢𝑣∈𝐸(𝐺)

 𝑔(𝑑𝑢 , 𝑑𝑣)

ERSO(𝐺) ≤
√2 ⋅ 9 ⋅ 3

4
⋅ (1 + 2log(3)) =

27√2

4
⋅ (1 + 2log(3))

𝐸𝑅𝑆𝑂(𝐺) ≈
27√2

4
⋅ 2.193 = 10.58√2 ≈ 15.05

 

3 For ECSO(G) : 

ECSO(𝐺) ≤ √2𝑚(Δ − 1) ⋅ max
𝑢𝑣∈𝐸(𝐺)

 ℎ(𝑑𝑢 , 𝑑𝑣) 

ECSO(𝐺) ≤ √2 ⋅ 9 ⋅ 2 ⋅
13

9
= 26√2 

Now we are able to show computation of these enhanced Sombor indices for a particular graph 𝐾3,3 inspiring our 

theorems - which always verify its upper/lower-bounds/properties established in above Theorems. 

6. Conclusion 

Summary of Findings and Contributions: 

In this work, we had extended and investigated the mathematical formalism of Sombor index together with its 

siblings ie; other version Modified Reduced Sombor Index & co-Sombor Index which are bettered form of existing 

indices. Key contributions & results of this study are summarized as follows: 

1 Weighted/Enhanced Indices: We made a weight/enhanced-based extension of the Sombor Index, 

Reduced Sombor Index (ERS) and co-Sombor Index ECS to give an insight with regards to graph 

properties using weighting functions 𝑓(𝑑𝑢 , 𝑑𝑣), 𝑔(𝑑𝑢, 𝑑𝑣)andℎ(𝑑𝑢 , 𝑑𝑣). 

2 Theoretical Properties: We derived key properties and theorems for the enhanced indices: 

▪ Theorem 1: Proved 𝐸𝑆𝑂(𝐺) ≥ 𝑆𝑂(𝐺), i.e. the enhanced index is at least as large as Sombor Index 
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▪ Theorem 2: Established that 𝐸𝑅𝑆𝑂(𝐺) ≥ 𝑅𝑆𝑂(𝐺), shows the fact that a stronger index can be 

obtained by our improved reduced set theory. 

▪ Theorem 3: 𝐸𝐶𝑆𝑂(𝐺) ≥ 𝐶𝑆𝑂(𝐺) Jusstified that the proposed ecsomor index snippet captures 

additional information. 

▪ Theorem 4: Max Order of any Enhanced Index in Bipartite Graphs, generalization to 𝐾3,3, showing 

limits reached by these measures. 

3 Practical Applications: We tested the improved indices against chemical graph theory, social network 

analysis and biological networks. The enhanced ones yielded deeper insight and more refined 

measurements than had been realized with 50 years of the legacy indices, thereby proving relevant in 

real-world applications. 

4 Examples Calculations: The complete bipartite graph 𝐾3,3 was used to show detailed calculations as a 

demonstration of the use of theorems and how augmented indices were computed. These examples not 

only confirmed the theoretical limits but also showed detailed calculations of these indices in practice. 

Potential Future Research Directions: 

Several next research directions are opened thanks to this study, for further promoting the theory and applications 

of improved graph indices: 

▪ Generalisation to Other Graph Classes: The analysis of the improved Sombor indices on other classes 

of graphs as regular, planar and weighted graphs. Study the behavior of these more relaxed notions in 

terms of how they behave under enhanced indices and give corresponding properties and bounds. 

▪ Optimization of Weighting Functions: Investigate the optimization of the weighting functions 

𝑓(𝑑𝑢, 𝑑𝑣), 𝑔(𝑑𝑢 , 𝑑𝑣) and ℎ(𝑑𝑢 , 𝑑𝑣) for different applications. Create methods to identify which functions 

are best for different network types and applications. 

▪ Develop Algorithms: Develop algorithms that compute the expanded Sombor indices for large scale 

graphs. Study the computational complexity and scalability of those algorithms to validate they can 

handle real-world datasets well. 

▪ Dynamic Networks: Investigate the applications of improved Sombor indices on dynamic networks, for 

example social network and biological/communications network styles. How can analysts analyse these 

indices to watch trends, identify important events or patterns that have occurred over time. 

▪ Empirical Validation: Conduct empirical studies to validate the improved indices on actual data. 

Demonstrate the practical advantages and effectiveness of these indices by comparing their performance 

and accuracy in various domains to traditional measures. 

▪ Multidisciplinary Applications: Find other applications for the improved Sombor indices across 

disciplines, such as epidemiology (disease spreading), ecology and finance. It is worthwhile to study how 

one may utilize these indices in modelling complex phenomena, exploring interactions and gaining 

insights across disciplines. 

The research direction illustrated in this work will help us to enrich the theoretical basis of the Sombor indices as 

well their practical application which, consequently support better understanding on graph theory and related 

knowledge for its applications too. 
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