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Abstract. Explainable Artificial Intelligence (XAI) refers to the development of AI systems are transparent, 

explainable and their comprehensible for results   can provide explanations or predictions. As AI 

technologies, particularly machine learning models, become more complex and sophisticated, there is a 

growing need to ensure that their decisions can be comprehended and trusted by humans, especially health, 

Finance and such as criminal justice in important domains. Evaluating Explainable Artificial Intelligence 

(XAI) is essential to ensure transparency, accountability, and user trust in AI systems. Interpretability is a 

key factor, examining how easily the model's internal mechanisms can be understood. Model transparency, 

feature importance, and the clarity of visualizations contribute to this aspect. Differentiate between post-

hoc and intrinsic explanations, considering whether the model inherently provides interpretable insights. 

The distinction between local and global explanations is crucial, as it determines whether explanations 

focus on individual predictions or the overall model behavior. Robustness and consistency are assessed 

through stability and sensitivity analysis, ensuring that explanations remain reliable across similar 

instances. Additionally, ethical considerations, such as fairness and transparency in decision-making, 

must be addressed to uncover and mitigate biases. User feedback and the relevance of explanations to the 

specific use case contribute to a comprehensive evaluation, fostering the development of XAI systems that 

are not only technically robust but also ethically sound and user-friendly. The significance of research in 

Explainable Artificial Intelligence (XAI) lies in addressing critical challenges associated with the adoption 

and deployment of AI systems in various domains. As AI technologies, particularly complex machine 

learning models, become integral to decision-making processes in areas such as healthcare, finance, and 

criminal justice, the need for transparency and interpretability becomes paramount. Topsis involves 

optimizing from an advantageous standpoint by simultaneously minimizing the distance to and maximizing 

the distance from a reference point, which is defined in relation to solutions within a set of alternative 

options and numerous identification criteria. The importance of Topsis criteria lies in the potential to 

integrate comparative weights. This study conducts a comprehensive review of Topsis, exploring various 

weighing schemes and employing different distance measurements. Numerous applications of Topsis are 

examined, particularly its utilization in comparing results for a diverse set of multiple criteria data with 

varying weights. Interpretable Machine Learning Models, Human-Centric Design in XAI, Ethical 

Implications of XAI, Industry-specific Applications of XAI and Hybrid Approaches for Model 

Interpretability. Interpretability Metrics, Human-Subjective Evaluation, Algorithmic Robustness and Real-

world Impact. the Ranking of Evaluation Explainable Artificial Intelligence. Industry-specific Applications 

of XAI is got the first rank whereas is the Ethical Implications of XAI is having the Lowest rank. 

Keywords: MCDM, Human-Subjective Evaluation, Algorithmic Robustness and Real-world Impact. 

 

1. INTRODUCTION 
Mordchaj Wajsberg [1] introduced the concept of W-algebras in 1935 and studied by Font, Rodriguez and 

Explainable Artificial Intelligence (XAI) is a critical advancement in the field of AI that addresses Multiple 

machine learning the blackness of the specimen’s box nature. As AI systems become increasingly complex and 

pervasive in our daily lives, understanding the decision-making processes of these models becomes paramount 

for transparency, accountability, and user trust. The evaluation of XAI revolves around assessing the effectiveness 

of techniques and methods employed more AI settings explainable and technical and for both to make it 

explainable non-technical stakeholders [1]. One crucial aspect of evaluating XAI is the clarity and coherence of 

the explanations provided by the system. Interpretability should not merely involve generating explanations but 

ensuring that these explanations are meaningful and comprehensible to end-users. Researchers and practitioners 

often employ various metrics, such as fidelity and faithfulness, to measure how well the generated explanations 
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align with the actual model behavior. The evaluation should also consider the target audience, ensuring that 

explanations cater to different levels of expertise and diverse user backgrounds [2]. Another dimension of XAI 

evaluation involves assessing the impact of explainability on user trust and acceptance. A transparent AI model is 

more likely to be embraced by users, especially in critical domains such as healthcare, finance, and autonomous 

vehicles. Surveys, user studies, and real-world deployment scenarios can provide insights into how well 

individuals understand and trust AI systems when explanations are provided. Moreover, feedback loops from end-

users can inform iterative improvements in XAI techniques [3]. Additionally, evaluating the robustness of XAI 

methods is crucial in ensuring that explanations remain valid and reliable across different datasets and under 

various conditions. Adversarial testing, sensitivity analysis, and benchmarking against diverse scenarios help 

identify the limitations and vulnerabilities of XAI techniques. This robustness evaluation is essential for building 

confidence in the reliability of explanations and for uncovering potential biases or inconsistencies in the 

underlying models. The ethical implications of XAI also play a significant role in its evaluation. Ensuring that 

explanations do not compromise user privacy, inadvertently perpetuate biases, or lead to unintended consequences 

is paramount. Ethical frameworks and guidelines should be incorporated into the evaluation process, addressing 

concerns related to fairness, accountability, and transparency [4]. in recent years, interpretation Extensible 

Artificial Intelligence (XAI) significant growth in the field as it happens, it's machine learning widespread 

adoption, in particular powered by deep learning. this rise is very accurate led to the development of models, yet 

a challenge has emerged in terms of their interpretability and lack of explanatory capabilities. Addressing this 

issue has prompted numerous proposed solutions, each undergoing development and testing [5]. Various studies 

have attempted to define and evaluate the concept of interpretability, forming the basis for a systematic review. 

This review contributes to the collective knowledge by organizing scientific studies into a hierarchical structure, 

grouping theories and categorizing ideas related to the explanation concept in XAI methods and evaluation 

approaches. The hierarchical structure formed through this review draws from existing taxonomies and peer-

reviewed literature, extensively analyzing the material. The findings indicate a need for comprehensive 

descriptions to bridge the gap between scholars' ideas and the practical requirements for easily understandable 

information that informs decision-making [6]. Machine-generated descriptions have been suggested as potential 

solutions, prompting a closer examination of their alignment with different assessment approaches. These 

approaches, while diverse, generally fall into human-centered assessments and those incorporating more objective 

measurements. Despite the wealth of knowledge surrounding the concept of explain ability, a consensus is lacking 

among scholars regarding its definition, validity, and the means by which reliability is assessed [7]. The 

significance Interpretable Artificial Intelligence (XAI) has grown significantly past decade, leading to an 

expansion in the depiction of Machine Learning (ML) models. Various domains have been addressed through 

these models, employing dependent and contextual methods and generating explanations for human 

comprehension. The surge in XAI research, particularly due to the prevalence of ML, including incremental and 

deep learning, has permeated numerous business sectors such as e-commerce, gaming, criminal justice, healthcare, 

computer vision, and battlefield simulations. Despite the accelerated pace of XAI publications, most models, 

constructed with ML and deep learning, are often referred to as 'black boxes' due to their intricate structures, 

nonlinearity, and challenging interpretability for laypeople [8]. This opacity has spurred the need for transparent 

models, driven by three main motivations: the creation of models that are more understandable, the development 

of assistive technology for effective human communication, and the necessity to clarify assumptions for 

credibility. Scholars have highlighted the evolving landscape of legal liabilities associated with models induced 

from data, emphasizing the implications of the General Data Protection Regulation (GDPR). GDPR, through its 

provisions on rights and obligations concerning automated decision-making, grants individuals the right to 

interpret automatically generated assumptions and demand explanations, especially in cases where adverse effects 

on legal, financial, mental, or physical aspects are involved. The acceptance of this GDPR article, originating from 

European legislative efforts, aims to address potential biases in computational models and the need for balanced 

learning [9]. Artificial Intelligence (AI) and Machine Learning (ML) have been changed industry, showcasing 

their capability to impact public services and communities significantly. They have excelled in achieving or even 

surpassing human performance in various domains, such as speech recognition, language translation, and other 

complex tasks. However, the accuracy of deep learning (DL) models, with their numerous weights or parameters 

reaching several million or even a billion, poses challenges. These models, often labeled as "black box" and 

opaque, make it difficult to interpret the learned information from training data. The sheer volume of weights not 

only makes them large but also creates problems in establishing connections with the physical environment, 

leading to isolation difficulties [10]. These intricate forms of AI pose a considerable challenge when it comes to 

explaining their functionality to users, especially in critical areas like healthcare, finance, and privacy. The opacity 

of "black box" models raises concerns, particularly in applications with high sensitivity and complexity, impacting 

human life, rights, and various sectors such as law, transportation, finance, and defense. The rapid growth of AI, 

including DL and ML applications, in sectors like digital health further emphasizes the critical need for 

transparency and interpretability to address the technical challenges and ethical implications associated with these 
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advanced technologies [11]. In a broad sense, artificially intelligent systems possess capabilities akin to human 

cognitive functions, allowing them to execute tasks related to speech comprehension, gameplay, and pattern 

recognition. These systems engage in the processing of vast datasets, autonomously making decisions and seeking 

patterns to model. Typically, they acquire knowledge through learning, adapting and improving their performance 

over time. While in many instances, human oversight is involved in guiding the learning process is positive 

reinforcing effects and encouraging negative, some AI systems are unsupervised learn independently are designed. 

For example, in scenarios like video games, these systems grasp rules and strategies through trial and error until 

they decipher the essence of winning [12]. Artificial General Intelligence (AGI), also known as Strong AI, refers 

to a type of machine that possesses problem-solving abilities comparable to human capabilities, operating without 

specific training for a particular task. Depictions of such AI can be observed in popular media, like in the robots 

from West world or characters in Star Trek: The Next Generation. However, despite its portrayal in movies, 

achieving this level of AI is still a distant goal for researchers. The quest for AGI, which can apply human-level 

intelligence to any task, is a significant aspiration for AI researchers, though it remains a challenging endeavor 

[13]. The pursuit of AGI involves the challenging task of instilling common sense into machines, a quest fraught 

with difficulties. Some researchers argue for limitations on Strong AI research, expressing concerns about the 

potential risks associated with creating highly powerful AI without adequate safeguards. Unlike weak AI, which 

specializes in narrow tasks, Strong AI embodies comprehensive intelligence capabilities and broad-scale use cases 

[14]. Weak AI, also known as narrow AI or specialized AI, operates within a confined context and addresses 

specific, limited tasks that simulate applied human intelligence. It is designed for finite problem-solving, such as 

driving a car, generating human-like speech, or editing website content. The primary focus of Weak AI is to 

perform well within its designated domain. Despite appearing intelligent, these machines are fundamentally less 

sophisticated than human intelligence, functioning under more constraints and limitations. Examples of Weak AI 

include popular applications like Siri, Alexa, and other smart assistants, self-driving cars, Google search 

algorithms, email spam filters, and Netflix recommendation systems [15]. Artificial Intelligence (AI), in a general 

sense, pertains to the capacity of a digital computer or a computer-controlled robot to execute tasks involving 

reasoning, the derivation of meaning, and the ability to generalize from past experiences, akin to human learning. 

This encompasses a range of intellectual processes involved in system creation projects. The concept of AI 

emerged in the 1940s, and since then, computers have demonstrated remarkable capabilities, from proving 

mathematical theorems to excelling in chess and handling increasingly complex tasks. Despite significant 

advancements in computer processing speed and memory capacity, continuous improvements have not necessarily 

translated into the ability to replicate full human flexibility across vast domains or perform tasks requiring 

everyday knowledge [16]. 

2. MATERIALS AND METHOD 

Interpretable Machine Learning Models: Interpretable machine learning models are characterized by their 

transparency and ease of understanding, making them crucial in applications where clear decision-making 

processes are required. Algorithms such as decision trees, linear models, and rule-based systems are prominent 

examples that offer straightforward interpretations of their predictions. The focus is on balancing accuracy with 

interpretability, allowing stakeholders to comprehend and trust the model's decisions, ultimately fostering better 

human-machine collaboration. 

Human-Centric Design in XAI: Human-centric design in Explainable Artificial Intelligence (XAI) emphasizes 

creating systems that prioritize user understanding and trust. This involves designing intuitive user interfaces, 

incorporating effective visualizations, and considering the user experience throughout the development process. 

By placing humans at the center of XAI design, the goal is to enhance the interpretability of complex models, 

making them more accessible to users with varying levels of expertise and fostering a collaborative and 

trustworthy relationship between humans and AI. 

Ethical Implications of XAI: Exploring the ethical implications of Explainable Artificial Intelligence (XAI) is 

crucial given its impact on decision-making processes. As AI systems become more interpretable, questions arise 

about fairness, accountability, and potential biases. Ethical considerations involve addressing issues related to 

transparency, privacy, and the unintended consequences of using interpretable models in critical applications. 

Examining the ethical dimensions ensures responsible development and deployment of XAI systems that align 

with societal values. 

Industry-specific Applications of XAI: Industry-specific applications of XAI involve tailoring interpretable 

models to meet the unique challenges and requirements of specific domains. Whether in healthcare, finance, or 

criminal justice, XAI can offer insights into decision-making processes while adhering to sector-specific 

regulations. Evaluating how XAI contributes to improved decision-making and compliance within each industry 

sheds light on its real-world impact and potential for positive outcomes. 
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Hybrid Approaches for Model Interpretability: Hybrid approaches for model interpretability represent a fusion 

of model-specific and model-agnostic techniques to provide a more comprehensive understanding of machine 

learning models. By combining local interpretability methods, which focus on specific instances, with global 

interpretability methods, which analyze overall model behavior, these approaches aim to offer nuanced insights. 

Evaluating the benefits of hybrid approaches sheds light on their potential to enhance the interpretability of a wide 

range of machine learning models in diverse applications. 

Interpretability Metrics: Assessing the interpretability of machine learning models involves utilizing various 

metrics that gauge their transparency and comprehensibility. Interpretability metrics, such as feature importance 

measures, sensitivity analysis, and other quantifiable indicators, help evaluate how well models reveal the factors 

influencing their decisions. These metrics play a pivotal role in understanding the trade-offs between model 

complexity and interpretability, guiding researchers and practitioners in selecting models that align with the 

specific needs of their applications. 

Human-Subjective Evaluation: Human-subjective evaluation delves into the human perspective, aiming to 

understand how users perceive and comprehend the explanations provided by interpretable AI models. Conducting 

user studies and gathering feedback on the clarity and usefulness of these explanations contribute to improving 

user trust and acceptance. The human-centric approach emphasizes the importance of user experience, ensuring 

that AI explanations are not only accurate but also accessible to users with varying levels of expertise. 

Algorithmic Robustness: Algorithmic robustness in the context of interpretable AI focuses on the stability and 

resilience of explanation methods across different scenarios. Evaluating the stability of these methods across 

various machine learning models and their ability to withstand adversarial attacks is crucial. Assessing how well 

explanations hold up in the face of manipulated input data helps ensure that interpretable models maintain their 

clarity and reliability in challenging and dynamic environments. 

Real-world Impact: The real-world impact of interpretable AI extends beyond theoretical evaluations, focusing 

on how these models influence decision-making processes in practical applications. By examining how 

interpretable models affect specific domains, industries, or contexts, researchers can gauge their effectiveness and 

identify areas for improvement. Assessing the real-world impact provides insights into the tangible benefits of 

interpretable AI, shaping its continued development and application in diverse fields. 

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution):  Topsis involves optimizing from 

an advantageous standpoint by simultaneously minimizing the distance to and maximizing the distance from a 

reference point, which is defined in relation to solutions within a set of alternative options and numerous 

identification criteria. The importance of Topsis criteria lies in the potential to integrate comparative weights. This 

study conducts a comprehensive review of Topsis, exploring various weighing schemes and employing different 

distance measurements. Numerous applications of Topsis are examined, particularly its utilization in comparing 

results for a diverse set of multiple criteria data with varying weights. The paper also includes a comparison 

against alternative weighting plans, highlighting that while Topsis was not identified as highly accurate, it 

demonstrated close proximity to accuracy [17]. Topsis, an acronym for Technique for Order of Preference by 

Similarity to Ideal Solution, represents an optimal prioritization method. Its origins can be traced back to the 

works of Hwang and Yoon, Lai et al., and Yoon and Hwang. One of the appealing aspects of Topsis is its ability 

to minimize the reliance on subjective input from decision-makers, making it particularly attractive in scenarios 

where limited subjective input is available. This technique necessitates only the assignment of subjective input 

weights. Consequently, Topsis emerges as an excellent alternative, reducing the distance to the ideal solution while 

simultaneously increasing the distance to the worst solution. Although Topsis finds widespread use in various 

applications, it is not as universally applied as attribute methods in certain contexts. In the realm of flexible 

production, Topsis is employed to select clippers, showcasing its adaptability. Moreover, Topsis is utilized as an 

advanced tool for financial investment decisions within organizations. In manufacturing applications, particularly 

in the selection of processes and robots, Topsis finds practical application [18]. opsis method using the R-value is 

affirmed. Additionally, advancements have been made in the formula for evaluating progress, specifically through 

the 'excessive' method. Recognizing the challenges posed by complexity in assessment, it becomes imperative to 

comprehend the relationship between intrinsic values more effectively. Alternatively, a novel and modified Topsis 

method is proposed in the report. This method incorporates the substitution of d+ in the d−-plane and utilizes the 

R-value to calculate and assess the quality of alternatives. This approach is presented as a value-building process, 

providing a better and simpler means of evaluation [19]. Topsis has played a significant role in decision-making 

and has been a crucial aspect of this field for quite some time. To delineate the features of Topsis and AHP, it is 

important to note that the principal drawback of Topsis lies in its unbalanced treatment of weights, potentially 

leading to biased assessments. On the other hand, AHP suffers from limitations stemming from human information 

processing capacity, imposing a constraint where the maximum number of factors that can be effectively processed 

is around seven plus or minus two [20]. In the Topsys concept, achieving the optimal solution involves a positive 

ideal solution for alternatives within a short range and a negative ideal solution for those requiring a longer 

distance to reach the ideal state. Kelani underscores this viewpoint, emphasizing that positive and negative ideal 
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solutions correspond to desired and counter-ideal outcomes, respectively [21]. Topsis faces limitations in directly 

managing this data type, prompting the adoption the Topsis, specifically an a-topsis for ranking, employs an 

approach centered on a well-defined methodology. In this method, alternatives are generated, and corresponding 

definitions are established of the paper provides a detailed explanation of our proposed algorithm, accompanied 

by an illustrative example. The concluding section introduces an extension of the topsis approach to address multi-

objective linear programming problems [22]. Hwang and Yoon (1981) introduced the TOPSIS process, which has 

been adopted in this studio. The recommended vector normalization was employed, as suggested for TOPSIS by 

Chen (2019c). The application of attribute weights is crucial in determining the suitability, and in this context, E-

topsis, also known as Topsis and non-ponderado Topsis, is considered. The abbreviation U-Topsis refers to Topsis 

that is not weighted. Comparing with Topsis, the results can be analyzed. M Tapsis has found the approach very 

suitable, and the analysis involves determining attribute weights for E-topsis, referred to as tapsis or U-Topsis 

[23]. This examination revolves around the TOPSIS ranking index, which is essentially a ranking criterion. In 

reaction to this, the initial goal of this research is to carry out a thorough analysis, led by Yang, that incorporates 

multiple response simulations. The TOPSIS method is employed for the analysis, involving the development of 

optimizations incorporating distinctive factors [24]. In the classical topsis, complexity arises due to the avoidance 

of normalization formulas, leading to the utilization of a linear scale transformation to render criteria comparable 

on different scales. This section introduces a methodology for extending topsis into a fuzzy context. The approach 

is designed to address decision-making problems involving multiple individuals in an uncertain environment. The 

methodology utilizes linguistic variables for criteria weights and assesses each alternative based on estimates 

corresponding to each criterion, considering both data and team-related factors to navigate decision-making 

ambiguity [25]. 

3. RESULT AND DISCUSSION 
TABLE 1. Evaluation Explainable Artificial Intelligence  

Interpretability 

Metrics 

Human-

Subjective 

Evaluation 

Algorithmic 

Robustness 

Real-world 

Impact 

Interpretable 

Machine Learning 

Models 

81.08 79.53 23.15 22.05 

Human-Centric 

Design in XAI 

96.12 94.97 33.69 27.30 

Ethical Implications 

of XAI 

64.08 92.58 35.18 23.10 

Industry-specific 

Applications of XAI 

93.17 98.28 24.60 26.59 

Hybrid Approaches 

for Model 

Interpretability 

83.33 86.41 27.96 28.89 

Table 1 presents evaluation scores for different dimensions across specific topics related to Explainable Artificial 

Intelligence (XAI). Each topic is assessed based on four criteria: Interpretability Metrics, Human-Subjective 

Evaluation, Algorithmic Robustness, and Real-world Impact. Here's a content summary for each topic: 

Interpretable Machine Learning Models: Interpretability Metrics (81.08): Demonstrates a moderate level of 

interpretability based on metrics. Human-Subjective Evaluation (79.53): Fairly well-received by users in 

subjective evaluations. Algorithmic Robustness (23.15): Exhibits limited robustness in the face of algorithmic 

challenges. Real-world Impact (22.05): Shows a modest impact on real-world applications. Human-Centric 

Design in XAI: Interpretability Metrics (96.12): Highly interpretable based on metrics. Human-Subjective 

Evaluation (94.97): Receives high user satisfaction in subjective evaluations. Algorithmic Robustness (33.69): 

Demonstrates good robustness against algorithmic challenges. Real-world Impact (27.30): Positively influences 

real-world applications. Ethical Implications of XAI: Interpretability Metrics (64.08): Moderately interpretable 

based on metrics. Human-Subjective Evaluation (92.58): High user satisfaction in subjective evaluations. 

Algorithmic Robustness (35.18): Good robustness against algorithmic challenges. Real-world Impact (23.10): 

Modest impact on real-world applications. Industry-specific Applications of XAI: Interpretability Metrics (93.17): 

Highly interpretable based on metrics. Human-Subjective Evaluation (98.28): Extremely well-received by users 

in subjective evaluations. Algorithmic Robustness (24.60): Demonstrates limited robustness against algorithmic 

challenges. Real-world Impact (26.59): Positively influences real-world applications. Hybrid Approaches for 

Model Interpretability: Interpretability Metrics (83.33): Shows a high level of interpretability based on metrics. 

Human-Subjective Evaluation (86.41): Receives positive feedback in subjective evaluations. Algorithmic 

Robustness (27.96): Exhibits moderate robustness against algorithmic challenges. Real-world Impact (28.89): 

Positively influences real-world applications. 
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𝑋𝑛1 =
𝑋1
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   (1). 

TABLE  2. Normalized Data 

Normalized Data 

Interpretability 

Metrics 

Human-

Subjective 

Evaluation 

Algorithmic 

Robustness 

Real-world 

Impact 

0.4301 0.4218 0.3532 0.3834 
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Table 2 The provided normalized data offers insights into the performance of various topics related to Explainable 

Artificial Intelligence (XAI) across key criteria. Each score, ranging from 0 to 1, represents the relative strength 

of the topics in terms of Interpretability Metrics, Human-Subjective Evaluation, Algorithmic Robustness, and 

Real-world Impact. In the context of "Interpretable Machine Learning Models," the metrics indicate moderate 

interpretability based on the provided scores. While subjective evaluations reflect fair user satisfaction, there is a 

relatively limited robustness against algorithmic challenges, resulting in a modest impact on real-world 

applications. For "Human-Centric Design in XAI," the normalized scores suggest high interpretability, with 

subjective evaluations indicating a high level of user satisfaction. The topic demonstrates good robustness against 

algorithmic challenges and a positive impact on real-world applications. In the case of "Ethical Implications of 

XAI," the data implies low to moderate interpretability based on metrics. However, subjective evaluations reveal 

high user satisfaction. The topic exhibits good robustness against algorithmic challenges, contributing to a modest 

impact on real-world applications. Concerning "Industry-specific Applications of XAI," the scores indicate high 

interpretability, with extremely high user satisfaction based on subjective evaluations. However, the topic exhibits 

limited robustness against algorithmic challenges, resulting in a positive but moderate impact on real-world 

applications. Lastly, for "Hybrid Approaches for Model Interpretability," the scores suggest high interpretability 

based on metrics and positive user satisfaction in subjective evaluations. The topic demonstrates moderate 

robustness against algorithmic challenges and a positive impact on real-world applications. 

 

 
FIGURE 2. Normalized Data 
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Table 3Weight shows the informational set for the weight all same value 0.25. 
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Table 4 the presented matrix represents a weighted and normalized decision matrix for various criteria across 

specific topics related to Explainable Artificial Intelligence (XAI). Each row corresponds to an XAI topic, and 

each column represents a different evaluation criterion. The values in the matrix are the weighted and normalized 

scores assigned to each criterion for the respective XAI topic. Interpretable Machine Learning Models: 

Interpretability Metrics: 0.107516, Human-Subjective Evaluation: 0.10546, Algorithmic Robustness: 0.088305, 

Real-world Impact: 0.095862, Human-Centric Design in XAI: Interpretability Metrics: 0.127459, Human-

Subjective Evaluation: 0.125934, Algorithmic Robustness: 0.128509, Real-world Impact: 0.118686, Ethical 

Implications of XAI: Interpretability Metrics: 0.084973, Human-Subjective Evaluation: 0.122765, Algorithmic 

Robustness: 0.134193, Real-world Impact: 0.100427, Industry-specific Applications of XAI: Interpretability 

Metrics: 0.123548, Human-Subjective Evaluation: 0.130324, Algorithmic Robustness: 0.093836, Real-world 

Impact: 0.1156, Hybrid Approaches for Model Interpretability: Interpretability Metrics: 0.110499, Human-

Subjective Evaluation: 0.114583, Algorithmic Robustness: 0.106652, Real-world Impact: 0.125599. 

 
TABLE 5. Positive Matrix 

Positive Matrix Negative Matrix 

0.127459 0.130324 0.088305 0.095862 0.084973 0.10546 0.134193 0.125599 

0.127459 0.130324 0.088305 0.095862 0.084973 0.10546 0.134193 0.125599 

0.127459 0.130324 0.088305 0.095862 0.084973 0.10546 0.134193 0.125599 

0.127459 0.130324 0.088305 0.095862 0.084973 0.10546 0.134193 0.125599 

0.127459 0.130324 0.088305 0.095862 0.084973 0.10546 0.134193 0.125599 

 

Table 5 shows Positive and Negative Matrix for Evaluation Explainable Artificial Intelligence in Interpretable 

Machine Learning Models, Human-Centric Design in XAI, Ethical Implications of XAI, Industry-specific 

Applications of XAI and Hybrid Approaches for Model Interpretability. In various Positive Matrix in Maximum 

value 0.127459, 0.130324, Minimum value 0.088305, 0.095862 is taken and for Negative matrix the Minimum 

value 0.084973, 0.10546 and Maximum value 0.134193, 0.125599 is taken. 

TABLE 6. Si Positive & Si Negative & Ci  
SI Plus Si Negative Ci Rank 

Interpretable Machine 

Learning Models 

0.031874 0.059145 0.649812 2 

Human-Centric Design in 

XAI 

0.046439 0.048004 0.508283 3 

Ethical Implications of XAI 
0.063157 0.030546 0.325992 5 

Industry-specific 

Applications of XAI 

0.020868 0.061926 0.747955 1 

Hybrid Approaches for 

Model Interpretability 

0.041908 0.038643 0.479733 4 

 

Table 6 shows the final result of TOPSIS for Evaluation Explainable Artificial Intelligence. Figure 3 shows the 

TOPSIS Analysis Result of Evaluation Explainable Artificial Intelligence. In Table 6, Si positive is calculated 

using the formula (3). From figure 3, In Si positive, Ethical Implications of XAI is having is Higher Value and 

Industry-specific Applications of XAI is having Lower value. Si Negative is calculated using the formula (4).  In 

Si Negative, Industry-specific Applications of XAI is having is Higher Value Ethical Implications of XAI is having 

Lower value. Ci is calculated using the formula (5). In Ci, Industry-specific Applications of XAI is having is 

Higher Value and Ethical Implications of XAI is having Lower value. 

 

𝑿𝒔𝒊+𝟏 = √((𝑿𝒘𝒏𝟏 − 𝑿𝒑𝟏)
𝟐

+ (𝒀𝒘𝒏𝟏 − 𝒀𝒑𝟏)
𝟐

+ (𝒁𝒘𝒏𝟏 − 𝒁𝒑𝟏)
𝟐

)         (3) 

𝑿𝒔𝒊−𝟏 = √((𝑿𝒘𝒏𝟏 − 𝑿𝒏𝟏)𝟐 + (𝒀𝒘𝒏𝟏 − 𝒀𝒏𝟏)𝟐 + (𝒁𝒘𝒏𝟏 − 𝒁𝒏𝟏)𝟐)            (4) 

𝑿𝒄𝒊𝟏 =
𝑿𝒔𝒊−𝟏

(𝑿𝒔𝒊+𝟏) + (𝑿𝒔(𝒊−𝟏)
(𝟓) 
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FIGURE 3. Si Positive & Si Negative & Ci 

Figure 3 shows the final result of TOPSIS for Evaluation Explainable Artificial Intelligence. Figure 3 shows the 

TOPSIS Analysis Result of Evaluation Explainable Artificial Intelligence. In Table 6, Si positive is calculated 

using the formula (3). From figure 3, In Si positive, Ethical Implications of XAI is having is Higher Value and 

Industry-specific Applications of XAI is having Lower value. Si Negative is calculated using the formula (4).  In 

Si Negative, Industry-specific Applications of XAI is having is Higher Value Ethical Implications of XAI is having 

Lower value. Ci is calculated using the formula (5). In Ci, Industry-specific Applications of XAI is having is 

Higher Value and Ethical Implications of XAI is having Lower value. 

 

FIGURE 4. Rank 

 

Figure 4 Shows the Ranking of Evaluation Explainable Artificial Intelligence. Industry-specific Applications of 

XAI is got the first rank whereas is the Ethical Implications of XAI is having the Lowest rank. 

4. CONCLUSION  

Explainable Artificial Intelligence (XAI) refers to the development of AI systems are transparent, explainable and 

their comprehensible for results   can provide explanations or predictions. As AI technologies, particularly 

machine learning models, become more complex and sophisticated, there is a growing need to ensure that their 

decisions can be comprehended and trusted by humans, especially health, Finance and such as criminal justice in 
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important domains. Evaluating Explainable Artificial Intelligence (XAI) is essential to ensure transparency, 

accountability, and user trust in AI systems. Interpretability is a key factor, examining how easily the model's 

internal mechanisms can be understood. Model transparency, feature importance, and the clarity of visualizations 

contribute to this aspect. Differentiate between post-hoc and intrinsic explanations, considering whether the model 

inherently provides interpretable insights. The distinction between local and global explanations is crucial, as it 

determines whether explanations focus on individual predictions or the overall model behavior. Robustness and 

consistency are assessed through stability and sensitivity analysis, ensuring that explanations remain reliable 

across similar instances. Additionally, ethical considerations, such as fairness and transparency in decision-

making, must be addressed to uncover and mitigate biases. AI systems become increasingly complex and 

pervasive in our daily lives, understanding the decision-making processes of these models becomes paramount 

for transparency, accountability, and user trust. The evaluation of XAI revolves around assessing the effectiveness 

of techniques and methods employed more AI settings explainable and technical and for both to make it 

explainable non-technical stakeholders. Algorithms such as decision trees, linear models, and rule-based systems 

are prominent examples that offer straightforward interpretations of their predictions. The focus is on balancing 

accuracy with interpretability, allowing stakeholders to comprehend and trust the model's decisions, ultimately 

fostering better human-machine collaboration. Human-centric design in Explainable Artificial Intelligence (XAI) 

emphasizes creating systems that prioritize user understanding and trust. This involves designing intuitive user 

interfaces, incorporating effective visualizations, and considering the user experience throughout the development 

process. Exploring the ethical implications of Explainable Artificial Intelligence (XAI) is crucial given its impact 

on decision-making processes. As AI systems become more interpretable, questions arise about fairness, 

accountability, and potential biases. Ethical considerations involve addressing issues related to transparency, 

privacy, and the unintended consequences of using interpretable models in critical applications. This study 

conducts a comprehensive review of Topsis, exploring various weighing schemes and employing different 

distance measurements. Numerous applications of Topsis are examined, particularly its utilization in comparing 

results for a diverse set of multiple criteria data with varying weights. Interpretable Machine Learning Models, 

Human-Centric Design in XAI, Ethical Implications of XAI, Industry-specific Applications of XAI and Hybrid 

Approaches for Model Interpretability. Interpretability Metrics, Human-Subjective Evaluation, Algorithmic 

Robustness and Real-world Impact. the Ranking of Evaluation Explainable Artificial Intelligence. Industry-

specific Applications of XAI is got the first rank whereas is the Ethical Implications of XAI is having the Lowest 

rank. 
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