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 Abstract: The accuracy of medical image segmentation is crucial for diagnosis and treatment planning in 

the modern healthcare system. Deep learning methods, like CNNs, UNETs, and Transformers, have 

completely changed this industry by automating labor-intensive manual segmentation procedures that were 

previously done by hand. However, problems like complex architectures and blurry characteristics 

continue, which causes issues with accuracy. Researchers are working hard to overcome these obstacles to 

fully realize the potential of medical image segmentation in the revolution of healthcare. Our paper presents 

an enhanced U-Net model specifically designed for brain tumour MRI image segmentation to improve 

precision. There are three primary components to our strategy. First, we prioritize feature augmentation 

using methods like CLAHE in the picture preprocessing phase. Second, we modify the U-Net model's 

architecture with an emphasis on a customized layered design in order to improve segmentation outcomes. 

Finally, we use a CNN model for post-processing to further optimize segmentation results using further 

convolutional layers. A total of 3,064 brain MRI pictures were used to test (612 images), validate (612 

images), and train (1,840 images) our model. We obtained exceptional recall (93.66%), accuracy (97.79%), 

F-score (93.15%), and precision (92.66%). The Dice coefficient's training and validation curves showed 

little variation, with training reaching roughly 93% and validation 84%, suggesting good generalization 

ability. High accuracy was validated by visual review of the segmentation findings, albeit occasionally little 

mistakes like false positives were noticed. 

Keywords: Medical Image Segmentation, UNet, CLAHE, MRI Images, Healthcare Diagnosis, Deep 

Learning 

 

 

1. INTRODUCTION 

Brain tumors present a considerable health challenge, potentially deadly at any stage of detection (Nehra, 2021). 

Brain cancer can impact people of any age and gender, with more than 100 distinct types of brain tumors identified 

and classified as primary or metastatic (Zhang A. S.-S., 2017). Primary brain tumors can be malignant or non-

cancerous and may grow inside or surrounding brain structures. Conversely, secondary (metastatic) tumors are 

usually malignant and arise from other body regions before spreading to the brain. Primary brain tumor survival 

rates are dependent on several variables, including age, location, ethnicity, kind, and molecular features of the 

tumor (Kiran, 2024). 

MRI (Magnetic Resonance Imaging) (Abdelatty, 2024), which has become the gold standard, can now evaluate a 

wide range of cerebral pathologic abnormalities because of its radiation-free nature. MRI is beneficial and superior 

to CT in detecting acute ischemia lesions (Mahajan, 2024). However, the applicability of MRI in emergencies is 

limited due to the relatively long acquisition time, which makes rapid and accurate diagnosis important (Altmann, 

2024). Brain MRI segmentation is an essential medical imaging process that scans the brain's MRI into distinct 

regions of its structure (Kumar P. R., 2024). This method is necessary for the diagnosis (G{\"o}rgec, 2024), 

treatment planning, and monitoring of neurological disorders, including multiple sclerosis, brain tumors, 

Alzheimer's disease, and other abnormalities of the brain (Desale, 2024). Similarly, MRI is crucial for quantitative 

brain volumetry analyses in prenatal diagnosis and examining early human brain development (Ciceri, 2024).  
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One of the critical concerns in clinical research methods is segmenting MRI images of the human brain. In many 

image analysis applications, segmenting medical images is essential (Yellu, 2024). In medical image analysis, 

automated segmentation techniques are more accurate than manual segmentation. Using clinically collected MRI 

data, automated brain tissue segmentation is one of the critical phases in the quantitative analysis of the brain. It 

facilitates accurate quantitative assessment of the brain, assisting in identifying, diagnosing, and categorizing 

diseases. Therefore, the effectiveness of the segmentation strategy is essential for disease detection and treatment 

planning (Kumar, 2024). The segmentation process aims to separate and specify various anatomical structures, 

including white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and pathological regions. Automated 

segmentation of perinatal brain MRI remains difficult due to considerable changes in the brain's global shape and 

substantial variations in image intensity, reflecting the quick tissue maturation occurring around birth. 

Accurate and automated segmentation of the brain is critical for different brain analysis tasks, especially brain 

tumors, including high-resolution reconstruction and cortical surface analysis. Although Artificial Intelligence 

(AI) algorithms for medical image segmentation can perform super-human accuracy on average, many 

radiologists remain skeptical (Fidon, 2024). This skepticism partly arises from the fact that AI algorithms might 

malfunction and generate errors that contradict expert knowledge about the segmentation task, mainly when 

applied across various imaging protocols and anatomical pathologies (Cai, 2024). Traditional diagnostic methods 

are time-consuming and prone to errors (Solanki, 2023). The need for robust medical image segmentation 

algorithms has increased due to a demand for a more expert workforce in this specialized field. Traditional image 

segmentation methods, such as thresholding (Sharif, 2024), edge-based (Al Garea, 2024), and region-based 

methods (Reddy, 2024), face challenges due to restrictions in medical image acquisition, pathology types, and 

biological variations (Soppari, 2024). Brain MRI segmentation is exceptionally challenging due to constraints in 

image procurement, the nature of brain pathology, and biological variations. Another challenge in MRI 

segmentation is addressing the opacity in pixel values, which intuitionistic-based clustering algorithms aim to 

solve (Arora, 2024). 

Our study employs U-Net for Brain MRI segmentation due to its many advantages over traditional deep learning 

(DL), machine learning (ML), and clustering methods. U-Net addresses the complex structures of medical images 

using its encoder-decoder architecture, which helps precisely locate and segment features. Unlike conventional 

ML and clustering techniques that depend on handcrafted features and vast manual refinement, U-Net 

automatically learns appropriate features through its convolutional layers. The skip connections in U-Net are also 

valuable for the preservation of spatial information, generating segmentation findings that are more accurate, 

particularly in complex and varied anatomical structures. This makes U-Net specifically effective for brain MRI 

and fetal brain segmentation, overwhelming challenges connected with motion artifacts and high anatomical 

variability.  

2. REVIEW OF LITERATURE 

Shahzad et al. (Shahzad, 2022) introduced several progress in medical image segmentation employing neural 

networks by proposing a modified U-Net architecture for deployment on the Intel/Movidius Neural Compute Stick 

2 (NCS-2). The motivation behind U-Net is its demonstrated efficacy in medical image segmentation tasks, 

especially when handling limited dataset sizes. Their modified U-Net variant significantly reduced the parameter 

count from 30 million in the original U-Net to 0.49 million, desiring to optimize resource utilization without 

compromising performance. Promising results were obtained from experimental evaluations conducted on three 

different medical imaging datasets: Ziehl-Neelsen sputum smear microscopy (ZNSDB), heart MRI, and brain 

MRI (BraTs). For the BraTs, heart MRI, and ZNSDB datasets, the proposed approach obtained maximum dice 

scores of 0.96, 0.94, and 0.74, demonstrating strong performance and facilitating compelling inference on the 

NCS-2 platform. 

Akter et al. (Akter, 2024) presented a novel deep Convolutional Neural Network (CNN)-based architecture 

developed for automatically classifying brain images into four different classes alongside a U-Net-based 

segmentation model by employing six benchmarked datasets to conduct extensive evaluations to compare the 

influence of segmentation on tumor classification in brain MRI images. Two classification approaches were 

examined based on accuracy, recall, precision, and AUC parameters, and they surpassed pre-trained alternatives 

with an exceptional performance standard across all datasets. Specifically, their classification model reached the 

highest accuracy of 98.7% in a combined dataset and 98.8% when incorporated with segmentation. Notably, the 
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highest classification accuracy achieved 97.7% across the four individual datasets, underscoring the efficacy of 

their approach in increasing brain tumor classification and segmentation employing DL techniques. 

Shiny et al. (Shiny, 2024) introduced an optimization-driven approach for brain tumor classification from MRI 

scans. The methodology involved preprocessing pre-operative and post-operative MRI images employing filtering 

techniques and Region of Interest (RoI) extraction. Tumor segments were created from the preprocessed data by 

segmenting it using a modified U-Net model. Subsequently, histogram features were extracted, and tumor 

classification was performed employing a U-Net model trained with the suggested Poor Bird Swarm Optimization 

algorithm (PRBSA), a hybrid of the Poor and prosperous optimization (PRO) algorithm and Bird Swarm 

Algorithm (BSA). Finally, pixel change detection employed speeded-up robust features (SURF) on the classified 

output. The PRBSA-based U-Net model showed excellent performance, reaching the highest accuracy of 94%, 

sensitivity of 93.7%, and specificity of 94% in tumor classification tasks, showcasing its robustness in optimizing 

MRI-based brain tumor diagnosis. 

Rutoh et al. (Rutoh, 2024) introduced a novel 3D Guided Attention-based deep Inception Residual U-Net (GAIR-

U-Net) method developed to address challenges in tumor segmentation from multimodal MRI scans. The GAIR-

U-Net incorporated attention mechanisms, an inception module, and residual blocks with dilated convolution to 

improve feature representation and spatial context understanding. In developing the U-Net architecture, the model 

used inception and residual connections to capture complex patterns and hierarchical features while extending its 

width in three-dimensional space without significantly improving computational complexity. Although dilated 

convolutions allowed learning local and global information, they also enhanced segmentation accuracy and 

adaptability by prioritizing important regions and suppressing unnecessary features. Experimental evaluations on 

the BraTS 2020 dataset, including T1-weighted, T1-ce, T2-weighted, and FLAIR sequences, presented promising 

performance. The GAIR-U-Net acquired dice scores of 0.8796, 0.8634, and 0.8441 for whole tumor (WT), tumor 

core (TC), and improving tumor (ET), respectively, on the BraTS 2020 validation dataset. 

Chen et al. (Chen, 2024) introduced the Adaptive Cascaded Transformer U-Net (ACTransU-Net), a unique 

architecture for MRI brain tumor segmentation. ACTransU-Net combined Transformer and dynamic convolution 

within a cascaded U-Net framework to effectively capture global information and local details of brain tumors. 

The architecture incorporated two stages: initially cascading two 3D U-Nets for coarse-to-fine segmentation. 

Later, omni-dimensional dynamic convolution modules were integrated into the second-stage shallow encoder 

and decoder to improve local detail representation by dynamically modifying convolution kernel parameters. 

Additionally, 3D Swin-Transformer modules are presented into the second-stage deep encoder and decoder to 

capture long-range dependencies in the images, enhancing the global representation of brain tumors. Experimental 

results on the BraTS 2020 and BraTS 2021 datasets illustrated the effectiveness of ACTransU-Net, performing 

average Dice Similarity Coefficient (DSC) scores of 84.96% and 91.37% and 95th percentile Hausdorff Distance 

(HD95) values of 10.81 mm and 7.31 mm respectively.  

3. PROPOSED METHODOLOGY 

This paper presents a unique method for segmenting brain MRI data using a customized U-Net model. This model 

optimizes the arrangement of layers through comprehensive experimentation to achieve excellent segmentation 

results. The following sections provide an exhaustive explanation of our innovative approach. Figure 1 shows the 

overall methodology of our research work. 

 
FIGURE 1. The architecture diagram for the proposed model 
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     3.1   Dataset Description 

         The Kaggle dataset ("Brain MRI Segmentation") contains 3,064 brain MRI images, and each is carefully 

matched to a mask that indicates the exact location of any currently present tumors. This vast dataset is priceless 

for medical imaging researchers and practitioners because it offers a solid basis for creating, refining, and testing 

sophisticated ML models for tumor identification, segmentation, and analysis. Because of its thorough 

annotations, this dataset has a great deal of promise to enhance diagnostic accuracy and expand the capabilities of 

automated medical imaging systems. The sample of the dataset is shown in Figure 2. 

                           

(a) Original Image                                                          (b) Corresponding mask indicating tumor location  

FIGURE 2. Sample of the dataset 

Figure (a) illustrates the original brain MRI image, while Figure (b) displays the corresponding mask that 

delineates the tumor location within the same image. 

Data Preprocessing: 

 Pre-processing steps for the dataset are resizing, filtering, normalization, and histogram equalization; a detailed 

description of each step is provided below. Pre-processing is done to improve the data and make it more 

compatible for subsequent stages. 

Resizing: The method of resizing involves changing each image in the collection to a specific size. We must 

adjust the dataset because the neural network receives images of the same size. After executing the resizing step, 

the image measures 160 × 160 × 1. An input image is shown in Figure 3 (a), and its scaled image is shown in 

Figure 3 (b). 

 

                                            (a) Input Image                                       (b) Scaled Image 

FIGURE 3. Dataset Resizing (First column: Input Image, Second column: Resized Image) 
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Gaussian Filter: To reduce noise (high-frequency components) and blur specific areas of an image, a low-pass 

filter known as a Gaussian filter is employed. The weights within the kernel, which are used to determine the 

weighted average of the closest points (pixels) in an image, have the form of a Gaussian distribution, as the 

function's name suggests. A randomly selected input image is shown in Figure 4 (a), and the filtered image is 

shown in Figure 4 (b). 

 
FIGURE 4. The filtered image is shown in Figures, (a) input image and (b) after filtering the input image. 

Furthermore, before additional analysis or processing, preprocessing with CLAHE, MHE, and MBOBHE includes 

utilizing these image enhancement techniques to increase an input image's contrast and visibility. Every technique 

has advantages and qualities of its own. 

Multi-Purpose Beta Optimized Bi-HE (MBOBHE):  Though famous, the conventional Histogram Equalization 

(HE) method has trouble producing an enhancement that is evenly distributed. By taking into account three crucial 

characteristics—brightness preservation, detail preservation, and contrast enhancement—MBOBHE seeks to 

address this problem. Two sub-histograms that are produced after segmenting the original histogram using an 

optimal separating point are subjected to independent histogram optimization via MBOBHE. A weighted-sum 

aggregated objective function (AOF), which considers the three performance criteria, directs this optimization 

process. According to (Hum, 2014), MBOBHEO provides a more complete picture-enhancing performance than 

current bi-HE techniques. Its efficacy is confirmed by both quantitative and qualitative data, which show that 

MBOBH delivers a comprehensive perspective and successfully strikes a balance between contrast, brightness, 

and feature preservation in the enhanced images. This innovative method constitutes a noteworthy development 

in the field of image contrast enhancement.  

Multipeak Histogram Equalization (MHE): Using this image enhancement technique, photographs having 

many prominent intensity peaks in their histogram can have better contrast and clarity (Shi, 2004). With pixel 

coordinates (x, y) and intensity values I (x, y) ranging from 0 to L-1, let's say we have an input image I. L is the 

number of intensity levels (usually 256 for 8-bit images). 

Determine the input image's histogram: 

X(i), i = 0, 1…...L-1 

The number of pixels in the image with an intensity value of i is denoted by X(i). 

Determine the histogram's peaks: 

Prominent intensity levels in the image are represented by peaks. To ascertain the locations of peaks, we can 

employ a variety of techniques, such as locating local maxima. 

Divide the histogram into areas, often known as peaks: 

Divide the histogram into various regions or sub-histograms based on the peaks that have been detected. Every 

sub-histogram depicts a local peak and the intensity levels around it. 

 



Saritha Dasari et.al/ /REST Journal on Data Analytics and Artificial Intelligence 3(2),June 2024, 75-88 

 

Copyright@ REST Publisher                                                                                                                                                      80 
 

For every sub-histogram, carry out histogram equalization: 

Use the histogram equalization procedure for each sub-histogram to adjust the intensity values and enhance 

contrast. 

The following represents the classic histogram equalization function: 

A(x)=round ((L-1)*∑ (H(y) /N) for j = 0 to x) 

N is the total number of pixels in the sub-histogram (sum of H(y) for each j in the sub-histogram), and A(x) is the 

new intensity value for the input intensity x. 

The final improved image is formed by combining the equalized sub-histograms obtained from the individual sub-

histogram equalization based on the segmentation.  

CLAHE stands for contrast-limited adaptive histogram equalization:  CLAHE, a variation of Adaptive 

Histogram Equalization (AHE), includes a height parameter to control local contrast and limit noise amplification 

(Reza, 2004). The steps involved are: 

I. The image is divided into M × N non-overlapping sub-regions, with the size dependent on the desired 

local enhancement strength. 

II. A grayscale histogram H(i) is calculated for each sub-region. 

CNN image post-processing: The suggested CNN-based architecture for MRI segmentation in the second phase 

of the model makes use of the segmented images from the first phase of the fusion model. The segmented image 

from the earlier stage is provided as input to increase the segmentation accuracy of the suggested CNN model. An 

image without segmentation will display all background elements, such as borders and textures. This results in 

the removal of unwanted features from low-priority regions. The convolution and maxpooling layers of the 

suggested CNN model, each of which employs a different CB, are laid out as follows. For this activity, the regular 

stride length is used and no cushioning is used. 

The first CB consists of one MP layer and one convolution layer. The MP layer is 2-by-2, and the first convolution 

layer has 32 3-by-3 filters. The second CB consists of one MP layer and two convolution layers. While the MP 

layer has 32 filters in a (2 * 2) configuration, the two convolution layers each contain 16 filters in a (3 * 3) 

configuration. The third CB consists of one MP layer and two convolution layers once more. The filters in the MP 

layer are of size (2 * 2). whereas there are a total of 16 filters in the third convolution layer, each with a size of (3 

* 3). Following the third CB, the flattening layer is applied. It "flattens" the features by condensing the feature 

space into a single feature vector. 

Segmentation Using Proposed U‐Net Model:  DL has significantly transformed in different fields concerning 

analyzing large-scale images, audio, text, video, and tabular data. One of the immediate challenges that initially 

hampered the success of convolutional neural networks (CNNs) in medical image segmentation was the necessity 

for adequate medical images for training DL models. The U-Net architecture, developed for segmenting medical 

images in smaller datasets, was presented to address this issue. The segmented region of interest is highlighted in 

a pixel-by-pixel annotated image that U-Net generates. U-Net maintains "what" (the content) and "where" (the 

location) information, in contrast to conventional CNNs used for image classification, which frequently lose 

spatial information essential for segmentation tasks. U-Net emerges from how closely it resembles the letter U 

because it only has convolutional layers and no dense layers. It can process images of any size because it is an 

end-to-end fully convolutional network (FCN).   

In this study, a U-Net model has been developed from scratch for the automatic segmentation of the stomach, 

large bowel, and small bowel in the gastrointestinal (GI) tract. The optimal number and arrangement of layers 

were selected through comprehensive experimentation to perform the best segmentation results. The presented U-

Net model consists of a combination of convolution and max-pooling layers. As illustrated in Figure 5, the model 

has a U-shaped structure with an encoder on the left and a decoder on the right, following the standard U-Net 

layout. Interestingly, this model only includes convolution, max-pooling, and transpose convolution layers but no 

dense layers are included. This version of U-Net is intended for input images with a resolution of 160 by 160 

pixels, in contrast to the standard version. This U-Net model's specific layers have been adjusted to fit the 

dimensions of the input image. 
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FIGURE 5. Graphical Representation of U-Net Architecture 

The architecture is accessed in two ways. The context of the image is extracted utilizing the first path, also referred 

to as the contraction path or encoder. The encoder is a conventional stack of max pooling and convolutional layers. 

The second path is the decoder, which is the symmetric extending path used to obtain exact localization by 

transposed convolutions This is where the encoder does downsampling, and the decoder does upsampling. Precise 

segmentation tasks require the architecture to collect high-resolution features and the context of the input image.  

A. Encoder (Contracting Path) 

          The encoder path comprises repeated application of two 3x3 convolutions, individually followed by a ReLU 

activation and a 2×2 max pooling operation with stride 2 for downsampling. At every downsampling step, the 

number of feature channels is doubled. 

Let y be the input image, and l be the layer index in the encoder: 

ml  =  ReLU (Conv2D (m l-1, f = 3 , t = 1, q = ‘same’)) 

ml  =  ReLU (Conv2D (m l, f = 3 , t = 1, q = ‘same’)) 

ml+1 =  MaxPool  (m l, f = 2 , t = 2) 

Here,  

 Conv2D (ml, f, t, q) denotes a 2D convolutional layer involved in feature map ml with kernel size f, stride 

t, and padding q. 

 ReLU(y) describes the ReLU activation function applied to y. 

 MaxPool (y, f, t) represents the max pooling operation with kernel size f and stride t. 

B. Bottleneck 

         The bottleneck is the deepest portion of the network, with the greatest number of feature channels but the 

smallest spatial dimensions.  

It includes two convolutional layers with ReLU activation: 
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b  =  ReLU (Conv2D (mL, f = 3 , t = 1, q = ‘same’)) 

b  =  ReLU (Conv2D (b, f = 3 , t = 1, q = ‘same’)) 

C. Decoder (Expansive Path) 

         After upsampling the feature map, the decoder path consists of two 3×3 convolutions with ReLU activation. 

After every upsampling step, the corresponding feature map from the encoder path is concatenated (skip 

connections).  

Let, vl be the upsampled feature map, dl be the concatenated feature map, and m be the decoder's layer index:  

vl = UpConv2D (b, f = 2, t = 2) 

dl =  concat (vl, mL-l-1) 

dl= ReLU (Conv2D (dl, f = 3 , t = 1, q = ‘same’)) 

dl= ReLU (Conv2D (dl, f = 3 , t = 1, q = ‘same’)) 

Here: 

 UpConv2D (y, f, t) denotes a 2D transposed convolution used to y with kernel size f and stride t. 

 Concat (a,b)  defines the concatenation of feature maps a  and b along the channel dimension. 

D. Output Layer 

         The final output layer involves a 1×1 convolution to map each 64-component feature vector to the expected 

number of classes (generally 1 for binary segmentation), followed by a sigmoid activation to make the final 

segmentation map. 

z = sigmoid (Conv2D(d0, f = 1 , t = 1, q = ‘same’ )) 

Here,  

 Conv2D (y, f, t, q) describes a 2D convolutional layer with kernel size f, stride t, and padding q. 

 Sigmoid (y) denotes the sigmoid activation function applied to y. 

 

Up sampling: Boosting2D by repeating the row values twice, the Upsampling2D layer up samples the layer output 

dimension. This is where the contracting path and upsampling2D concatenate to form the expanding path. Similar 

to how maxpooling is present in the encoder section, the up sampling layer follows two conv2D layers in the 

decoder part. 

Skip Connection (Residual connection): Skip connection Following each of the two Conv2D layers in the 

encoder comes the Skip Connection (Residual connection), also known as the identity mapping, which connects 

to the matching same-shaped dimension layer in the decoder section. The copy and crop in the architecture above 

handle the residual connection task. The task of combining those two layers is completed by the Concatenate 

layer. Even in the worst situation, this skip connection does not negatively impact the model; on the contrary, it 

positively impacts the model’s output. 

The output segmentation map with filter 2 marks the conclusion of the decoder section. Once more, this layer 

passes through filters 1 and a Conv2D with Relu activation. The output categorizes each pixel according to 

whether a tumor is present or not. 

Hyper parameter Tuning:  Twenty epochs were used to train the models with a batch size of 32. While the 

epochs parameter specifies the number of runs over the entire training data, the batch size hyper parameter 

specifies the number of samples to proceed before changing the model's internal parameters. The learning rate, 

which regulates the model's pace of learning, is the essential hyper-parameter. It must not be unnecessarily high 

or low. The network may overshoot the low-loss regions if the learning rate is set too high, or it may take an 
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excessive amount of time to reach the minimal loss if it is set too low. In this work, the learning rate is set at 

0.0001. The Adam (Zhang, 2018) optimization method was applied for model compilation. In addition, the ReLU 

(Agarap, 2018) activation function has been used to activate all convolutional layers. Table 1 shows the parameters 

of the proposed model. 

TABLE 1. Parameters of the proposed model 

Parameter Value/Explanation 

Model ‘unet((H, W, 3))’ - A U-Net model with input shape (Height, Width, 3 channels) 

Loss Function  ‘dice_loss’ 

Optimizer ‘Adam(lr)’ 

Metrics ‘dice_coef’,’ accuracy’ 

Callbacks Various callbacks used during training 

ModelCheckpoint Saves the best model only (‘save_best_only=True’); verbose output enabled (‘verbose=1’) 

ReduceLROnPlateau Reduces learning rate by a factor of 0.1 if no improvement in validation loss for 5 epochs 

(‘patience=5’); minimum learning rate set to ‘1e-7’; verbose output enabled (‘verbose=1’) 

CSVLogger Logs training data to CSV file specified by ‘csv_path’ 

EarlyStopping Stops training if no improvement in validation loss for 20 epochs (‘patience=20’); does not 

restore best weights (‘restore_best_weights=False’) 

Training Data ‘train_dataset’ 

Epochs ‘num_epochs’ 

Validation Data ‘valid_dataset’ 

Verbose ‘0’ (silent mode for training output) 

 

4. EXPERIMENTAL ANALYSIS & RESULTS 

Our brain tumor detection and segmentation experimental setup makes use of several potent tools and libraries. 

To implement and assess machine learning models, including feature extraction, data preprocessing, and model 

performance measures, we utilize Scikit-learn, also known as sklearn. To visualize the MRI images, masks, and 

segmentation results, Matplotlib is used, which makes the findings easy to understand and display. In addition to 

enabling smooth code execution and sharing, Google Colab offers a scalable and collaborative computing 

environment that makes use of high-performance computing resources essential for training intricate models on 

sizable datasets. This integrated design increases the reliability and validity of our experimental results by 

guaranteeing a productive, collaborative, and repeatable research process. To achieve robust model evaluation 

and generalization, we have divided the dataset into training, validation, and test sets in our experimental setup. 

The dataset is divided into three sets: 612 images and masks from the validation set, 612 images and masks from 

the test set, and 1,840 images and masks from the training set. Our machine learning models can be trained, tuned, 

and tested more effectively thanks to this stratified split, which also ensures accurate performance evaluation and 

optimization. A set of evaluation metrics were used to evaluate the model. To assess the performance of our tumor 

detection and segmentation models, we use the following evaluation metrics: 

 Precision:  Precision measures the proportion of true positive predictions among all positive predictions. 

It indicates how many of the predicted positive cases are positive. 

Precision = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 

 Recall (Sensitivity): Recall measures the proportion of true positive predictions among all actual 

positive cases. It indicates how well the model identifies positive cases. 

Recall = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

 F-score: The F1-Score is the harmonic mean of precision and recall, providing a single metric that 

balances both aspects. It is particularly useful when the class distribution is imbalanced. 

F1-score = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 Accuracy: Accuracy measures the proportion of true positive and true negative predictions among all 

predictions. It indicates the overall correctness of the model. 

Accuracy = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑇𝑢𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
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Analysis of Dice Coefficient:   A popular statistic for assessing how comparable two samples are—in this case, 

the anticipated and ground truth masks of brain tumors in MRI images—is the dice coefficient. It is computed as 

the ratio of the total areas of both masks to twice the intersection of the ground truth and anticipated masks. In 

essence, more overlap and agreement between the estimated and actual tumor locations are indicated by a higher 

Dice coefficient. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. Dice Coefficient of the proposed model 

The curve is displayed in Figure 6. In the case of our model, we find that the validation Dice coefficient is 

approximately 84% and the training Dice coefficient is approaching 93%, indicating that the model performs 

reasonably well in generalizing to unknown data but with a minor decline in performance from the training set. 

Since both curves have a similar tendency, the consistency and small divergence between the training and 

validation curves suggest that the model is not appreciably overfitting. The model successfully learns the patterns 

and features required to precisely forecast tumor locations from the training data, as shown by the training curve's 

high Dice coefficient. However, the marginally lower validation Dice value raises the possibility that the 

distribution of data between the training and validation sets differs in some way. This may be the result of variables 

the model encounters during validation, such as variances in image quality, anatomical variability, or other 

features found in real-world data. 

Overall, the validation set yielded a Dice coefficient of about 84%, which is a good result and shows that the 

model can correctly identify and segment tumors in unseen MRI images. The model's capacity for generalization 

appears to be strong based on the consistency of its performance across training and validation sets; nonetheless, 

changes and additional research should be directed toward minimizing any disparity in these performance metrics. 

Generalization analysis of the proposed model: In this work, we evaluate a crucial component of model 

generalization for MRI image-based brain tumor identification and segmentation. The term "generalization" 

describes a model's capacity to extrapolate taught patterns and characteristics into real-world applications by 

applying its newly acquired knowledge to previously viewed data that falls outside of its training set. The training 

and validation accuracy also training and validation loss in Figures 7 and 8. 
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             FIGURE 7. Training and validation accuracy                                 FIGURE 8. Training and validation loss 

The figure 8 shows that, when it comes to the task of identifying and segmenting brain tumors from MRI images, 

our model shows strong signs of generalization. The term "generalization" describes the model's ability to 

extrapolate learnt patterns and characteristics into real-world applications by applying its learned knowledge to 

new, unseen data outside of the training set. 

First off, the model's ability to accurately categorize tumor and non-tumor regions within the training set of MRI 

images is demonstrated by its training accuracy of roughly 99.65%. The strong learning process, which allows the 

model to successfully capture complex features and patterns unique to the dataset, is shown by this high accuracy. 

Simultaneously, the validation accuracy of approximately 99.32% suggests that the model continues to function 

well when used with unobserved data. This validation accuracy is important because it shows that the model can 

generalize well, applying its gained information to new instances outside of the training samples, even though it 

is somewhat lower than the training accuracy. Both training and validation losses were continuously minimal 

throughout the training procedure. The model's inaccuracy during training was measured by the training loss, 

which dropped over time from an initial value of 0.880 in the first epoch to 0.092 in the last epoch. In a similar 

vein, over that time the validation loss dropped from 0.979 to 0.196. These low loss values show that, for both the 

training and validation datasets, the model successfully reduces mistakes and differences between expected and 

actual outputs. The model's capacity to generalize well is further supported by this consistency in loss reduction, 

which shows that the model learns to produce precise predictions while retaining resilience against overfitting or 

underfitting. The model's consistent and dependable performance across several datasets is supported by the small 

difference between training and validation accuracies as well as the convergence of training and validation losses 

at the end of the training process. The fact that the model has successfully acquired the important characteristics 

of brain tumor images without retaining extraneous information or background noise from the training set is 

indicated by this convergence. In summary, our proposed U-Net model shows good generalization capabilities in 

the crucial task of brain tumor detection and segmentation, based on the thorough examination of training and 

validation metrics from images. These results are crucial for increasing the precision and reliability of tumor 

detection in clinical settings, where it is necessary to improve patient outcomes and treatment plans. 

Performance of the proposed model:  Lastly, we have used test accuracy, F-score, precision, and recall to assess 

our model's performance. The performance of the proposed U-Net model is shown in Table 2. Precision, a metric 

used to gauge how accurate the positive forecasts were, came in at 92.66%. With a high precision value, the model 

minimizes false positives—regions that are wrongly labeled as tumors—and is highly effective at correctly 

identifying actual positive cases of brain tumors. The recall measure, which assesses how well the model captures 

all pertinent cases of brain tumors, came in at 93.65%. This illustrates how well the model detects most true 

positive cases, meaning that very few tumors are overlooked. In medical diagnostics, where missing a tumor could 

have serious repercussions for patient outcomes, a high recall rate is essential. The harmonic mean of recall and 

precision, or the F-score, is 93.15%. This well-balanced indicator captures the total efficacy of the model by taking 

into account both its performance in identifying true positives and its ability to prevent false positives. The model 

performs well in both areas, maintaining a good trade-off between precision and recall, as indicated by the high 

F-score. Furthermore, the model's overall accuracy on the test set is a remarkable 97.79%. The percentage of 

accurate outcomes (true positives and true negatives) among all instances investigated is known as accuracy. This 
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high accuracy rate demonstrates the model's dependable performance in a variety of scenarios by demonstrating 

its strong ability to accurately categorize both tumor and non-tumor regions. 

TABLE 2. Performance of the proposed U-Net model 

Evaluation Metrics Performance 

Precision 92.66 % 

Recall 93.65 % 

F-score 93.15 % 

Accuracy 97.79 % 

 

Performance Comparison with Trending Method: Our presented feature-enhanced  U-Net models exhibited 

outstanding performance in brain tumour MRI image segmentation when compared to traditional methods with 

(Zhang Y. a., 2024), (Huang, 2020) , and (Ishfaq, 2023) as shown in Table 3. The model designed by (Huang, 

2020) employed lightweight feature extraction modules and attention mechanisms to improve performance, 

allowing accurate diagnosis and adequate treatment planning. (Ishfaq, 2023) employed segmentation, clustering, 

and multi-class SVM to extract features and classify tumours. However, the multi-class SVM method needs to be 

enhanced in separating complicated datasets, resulting in lower performance. Additionally, both (Huang, 2020), 

(Ishfaq, 2023) struggled with semantic understanding of complex data, further hindering their performance. 

TABLE 3. Compare our proposed model with the existing method 

Reference Accuracy 

(Zhang Y. a., 2024) 0.806 

(Huang, 2020) 0.816 

(Ishfaq, 2023) 0.846 

Proposed U-net 0. 97 

 

In contrast, our U-NET models prioritized feature advancement during image preprocessing by employing 

techniques like CLAHE to enhance the visibility of complicated structures and indistinct features in medical 

images. We also tailored the U-Net architecture with a personalized layered design explicitly optimized for the 

challenges of brain tumour segmentation. This holistic approach addresses the complexities of medical image 

segmentation, resulting in excellent outcomes. Our proposed U-Net method performed an accuracy of 0.97, 

greatly exceeding traditional methods, which achieved accuracies of 0.806 (Huang, 2020), 0.816 (Ishfaq, 2023), 

and 0.846 (Zhang Y. a., 2024). This combination of innovative strategies highlighted the efficacy of our models 

in increasing the field of healthcare through enhanced medical image segmentation. 

Visual analysis of the segmentation: We have presented the performance of our model using a set of photos in 

the results part of our brain MRI segmentation analysis, showing both accurate and inaccurate segmentations. In 

Figure 9, the visulization is displayed. The real part of the mask image is clearly superimposed over the MRI scans 

in the first two figures. The capacity of the model to accurately identify and segment the tumor regions is seen in 

these figures. The model has successfully trained to separate tumor tissues from the surrounding brain structures 

based on how well the segmented areas in these images match the ground truth masks. Because it guarantees that 

the tumor zones are accurately identified without encompassing non-tumor areas, this precise segmentation is 

essential for accurate diagnosis and therapy planning. Unfortunately, there is a segmentation problem in the final 

image. The primary tumor site is properly segmented by the model, but an additional area is mistakenly identified 

as a tumor. This incorrect segment highlights a false positive in the model's predictions because it is located next 

to the correct segment area. Even though they are less common, these mistakes are important because they may 

result in MRI images being misinterpreted or needless therapeutic procedures. The intricacy and unpredictability 

of brain tumor appearances in MRI scans, the caliber of the training data, and possible overfitting to particular 

features within the training set are some of the reasons for this inaccuracy. In order to correct these flaws, the 

model must be improved by employing strategies including adding more diverse instances to the dataset, putting 

sophisticated regularization techniques into practice, and adjusting the model's hyperparameters to improve 

generalization. The focus of future research can be on error reduction strategies. 
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FIGURE 9. Visual analysis of segmented images 

5. CONCLUSION 

In this study, we present a unique approach to addressing the challenges of brain tumour MRI image segmentation 

in the realm of modern healthcare by using the power of DL algorithms. We introduce an enhanced U-Net model 

developed explicitly for brain tumour MRI image segmentation to improve precision. Our approach comprises a 

feature augmentation employing methods like CLAHE, MHE, and MBOBHE in the image preprocessing phase. 

Then, we modify the U-Net model's architecture with a customized layered design to enhance segmentation 

outcomes. Eventually, we utilize a CNN model for post-processing to optimize segmentation results further using 

additional convolutional layers. We performed remarkable recall 93.66 %, accuracy 97.79 %, F-score 93.15 %, 

and precision 92.66 %. The Dice coefficient's training and validation curves demonstrated slight variation, with 

training acquiring roughly 93% and validation 84 %, indicating good generalization ability. There are other 

possibilities where additional research can be done. This work laid the foundation for more precise and effective 

medical image segmentation techniques, which could significantly impact healthcare by helping radiologists with 

accurate diagnosis and treatment planning. 
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