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1. INTRODUCTION

Njastad[1] was presented and examined the concept of ¢ -open sets. By using ¢« _open sets Mashhour et

al.[13] defined and deliberate the concept of « -closed sets, o -closure of a set, & - continuity and « -
closedness in topology. Levine [2] introduced g-closed sets and studied their most important belongings.
M.K.R.S.Veera kumar[24] introduces generalized u -closed sets in topological spaces. R. Devi.etal [6].

established idea Semi-generalized homeomorphism and generalized semi-homeomorphism. A innovative class
of set name as o Generalized s -closed sets introduced by R.Devi and V.Vijayalakshmi[25] and study some

application of aGp -closed sets. In this article, we familiarized and examined the notion of aGp -
homeomorphism.

2. Preliminaries
Throughout this article the characterize topological spaces (H, C), 3,7 and (R, 7¥) on which no leaving proverbs

are supposed unless otherwise acknowledged. For subset B and a space (H, &), cl(B), int(B) and C(B) mean the
closure of B, interior of B and supplement of B in H separately. P(H) represents the power set of H.
Here we remembrance the subsequent definitions, which will be recycled frequently throughout this article.

Definition 2.1

A map define by n: (H, ©) — (J, y) is called o CH-CONtINUOUS fynction if each closed set K of (J, ), then n{(K)
is ®GH_ closed in (H, &).

Definition 2.2

A map defines by n: (H, §) — (J, y) 1S called aGp -irresolute function if each closed set k of (3, y), then n'Y(K) is
aCH _closed in (H, &).
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aGu -homeomorphism and their group structure.
We introduce the following definition.

Definition 3.1

A mapping function N is called a ®*Gkc- homeomorphism (resp. @94 — homeomorphism), if 1 is bijective and n

and ntare %GR _irresolute (resp. “GH-continuous).
Theorem 3.2

Each @Glic- homeomorphism is “GH- homeomorphism.
Proof

First consider map n. (4 ) — (J, y), K be closed set and aGu _ ¢losed in (J, y). Thus -t is «GHC closed in (H,
€). Thus, n is ®GHc _ jrresolute. Then n'(K) is “GHe - closed in (H, ). Hence n is “GH- continuous map. The

proof of the aGL - continuous map for p-Lis similar to the above.

The converse of the above theorem requirement false through the resulting example.
Example 3.3

Consider H=J= {s, t, u} through ={H, o, {s}, {s, u}}andy={J, o, {s, t}}.

Letp; (H, ) — (J, ) be defined as n(s)=s, n(t)=u and n(u)=t.

Here n and n'! are not a aGp-irresolute map.

Hence n is ®GC—homeomorphism but not @GH- homeomorphism,

Theorem 3.4

Each homeomorphism is aGp- homeomorphism.
Proof

Define the mapping p- H, 0 — U 7) be a homeomorphism. By definition each continuous map is aGu-
continuous map and each closed set is aGp -closed, we accomplish that n is aGu- homeomorphism-

The following example requirement false through the converse of the above theorem.

Example 3.5

Define H=J={s, t, u} through (={H, o, {s}, {s, u}} and y={J, o, {t, u}}.

Letn: (H, ) — (3, y) be defined as n(s)=y, n(t)=s and n(u)=t.

Now n is not continuous map. Then n is ®Gl—homeomorphism but not homeomorphism.

Theorem 3.6

Each 0‘GH-homeomorphism is g-homeomorphism.
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Proof

Let us define mapping n. H, 0 — (7 be a aGp-homeomorphism. We know that each aGp -continuous map
is ag —continuousmap and each aGp -closed set is g —closed, we achieve that n is a g-—

homeomorphism-

The resulting example requirement false through the converse of the above theorem.
Example 3.7

Consider H=J= {s, t, u} through {={H, o, {t}, {t, u}}andy={J, o, {t, u}}.

Letn: (H, ) — (3, y) be defined as n(s)=t, n(ty=u and n(u)=s.

The result n and n  are not a «Gp-continuous map.

Since n is a 9-homeomorphism but not an @G- homeomorphism.

Theorem 3.8

Each aGu- homeomorphism is a gs-homeomorphism.
Proof

Consider the mapping p- H, 0 — @7 be a aGp-homeomorphism. By definition, each  aGp-continuous map

is ags—continuous and each aGp -closed set is a gs—closed, hence prove that n is a gs-
homeomorphism.

The resulting example requirement false through the converse of the above theorem.

Example 3.9

Consider H=J= {s, t, u} through C={H, o, {s}, {s, u}} andy={J, o, {s}}.

Letn: (H, €) — (3, y) be defined as p(sy=s n(t)=u and n(u)=t.

Now n is not @Gu-continuous map. Because n js gs-homeomorphism but not an ®Gi- homeomorphism,

Theorem 3.10
Each aGu- homeomorphism is gsp-homeomorphism.

Proof

Let us consider n be a aGu-homeomorphism py : (H, ) — (J, y)- BY definition each aGp -continuous map is
gsp — continuous and each aGu -closed set is gsp —closed, then desired that n is gsp-homeomorphism.

The resulting example requirement false through the converse of the above theorem.

Example 3.11
Consider H=J= {s, t, u} through ¢={H, o, {s}, {s, u}} andy={J, o, {s}}.

Letn: (H, ©) — (3, y) Pe defined as p(sy=s n(t)=u and n(u)=t.
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Here n is not «Gu-continuous map, thus n js gsp -homeomorphism but not an ®Gu- homeomorphism.

Theorem 3.12

Each ®GH-homeomorphism is @9 —-homeomorphism.

Proof

Let n. H, ) — @ v be a aGp -homeomorphism. We know that, each aGu -continuous map is
og —continuous and each aGp - closed set is ag —closed, thus nis cg —homeomorphism.

The resulting example requirement false through the converse of the above theorem.

Example 3.13

Consider H=J= {s, t, u} through ¢={H, o, {s}, {s, u}}and y={J, o, {t, u}}.

Letn: (H, ) — (3, y) be defined as n(s)=y, n(t)=t and n(u)=s.

The result n is not aGp-continuous map and not an aGH- homeomorphism.

Hence nis “9 ~ homeomorphism.

Theorem 3.14

Each «CH-homeomorphism is pre-semi-homeomorphism.
Proof

A mapping define n. H, 0 — (7 be a aGp -homeomorphism. Since, each aGpu -continuous map is
pre —semi —continuous and each aGu -closed set is pre-semi-closed. We accomplish n is pre-semi

homeomorphism.

The resulting example requirement false through the converse of the above theorem.

Example 3.15

Consider H=J= {s, t, u} through C={H, o, {s}, {s, u}}andy={J, o, {s, t}}.

Letn: (H, ¢) — (J, y) be defined as n(s)=s, n(t)=t and n(u)=u.

Then n is pre-semi-homeomorphism but not an @G- homeomorphism. Hence n is not ®G-continuous map.

Theorem 3.16

#
Every 9~ — homeomorphism is “GK -homeomorphism.

Proof

Letn:(H, ) - (3, y)Pea g * —homeomorphism. By definition each g* — continuous map is aGp-continuous

and each g # _closed map is aGp -closed, we settle that n is aGpu homeomorphism.

The resulting example requirement false through the converse of the above theorem.
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Example 3.17

Consider H=J={s, t, u} through ¢={H, ¢, {s}, {t,u}}andy={J, o, {s, t}}

Letp: (H, &) — (I, y) be defined as n(s)=s, n(t)=t and n(u)=u.

#
Here the map n is ®Gl- homeomorphism. But n is not 9

—homeomorphism, since the map

n is not aGu-continuous map.

2. CONCLUSION

In this article, perception of an -Generalized -closed sets in topological spaces and their homeomorphism are
derived. Further, we discussed oaGu- homeomorphism in topological spaces containing the class of
homeomorphisms.
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