

Computer Science, Engineering and Technology Vol: 2(1), March 2024 REST Publisher; ISSN: 2583-9179 (Online) Website: https://restpublisher.com/journals/cset/ DOI: https://doi.org/10.46632/cset/2/1/5

Positive Implicative and Associative *Wi*-Ideals of *RLW*-Algebras

¹R. Shanmuga Priya, ²T. Prabhu, *³V. Nirmala

¹Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamilnadu, India.
 ²Hindusthan college of Engineering and Technology, Coimbatore, Tamilnadu, India.
 ³Karpagam Academy of Higher Education, Echanari, Coimbatore, Tamilnadu, India.
 *Corresponding Author Email: nirmalakutty9@gmail.com

Abstract. In this paper, we study positive implicative WI-ideal and an associative WI-ideal of RLWalgebra and investigate some of their properties. Also, we prove that every positive implicative WI-ideal is an implicative WI-ideal and hence a WI-ideal, and that every associative WI-ideal is a WI-ideal.

Keywords-- W-algebra; LW-algebra; RLW-algebra; RLHW-algebra; Lattice ideal; Ideal; Implicative WI-ideal; Positive Implicative WI-ideal; Associative Implicative WI-ideal. Mathematical Subject classification 2010: 03B60, 06B10, 06B20

1. INTRODUCTION

Mordchaj Wajsberg [1] introduced the concept of W-algebras in 1935 and studied by Font, Rodriguez and Torrens[2]. Residuated lattices were announced by Ward and Dilworth [3]. Ibrahim and Shajitha Begum [4] introduced the notions of LW-algebras and also investigated their properties with suitable llustrations. The authors [5] introduced the notion of anti-fuzzy Wajsberg implicative ideal (AFWI-ideal) of RLW-algebras.

In this paper, we consider positive implicative WI-ideal of RLW-algebra and investigate some related properties. Also, we prove that every positive implicative WI-ideal is an implicative WI-ideal and hence a WI-ideal, and that every associative WI-ideal is a WI-ideal.

2. PRELIMINARIES

In this section, we recall some basic definitions and properties which are helpful to develop our main results.

Definition 2.1[3]. A residuated lattice (\wp , V, \land , \otimes , \rightarrow , 0, 1) satisfied the following conditions for all $\mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \wp$,

- (i) $(\wp, V, \Lambda, 0, 1)$ is a bounded lattice
- (ii) $(\wp, \bigotimes, 1)$ is commutative monoid
- $(\text{iii}) \qquad \mathfrak{o} \otimes \mathfrak{p} \leq \mathfrak{q} \text{ if and only if } \mathfrak{o} \leq \mathfrak{p} \to \mathfrak{q}.$

Definition 2.2[2]. A *W*-algebra (\wp , \rightarrow , *, 1) satisfied the following axioms for all $\mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \wp$,

- (i) $\mathfrak{o} \to \mathfrak{o} = 1$
- (ii) If $(o \rightarrow p) = (p \rightarrow o) = 1$ then o = p
- (iii) $\mathfrak{o} \to 1 = 1$
- (iv) $(\mathfrak{o} \to (\mathfrak{p} \to \mathfrak{o})) = 1$
- (v) If $(\mathfrak{o} \to \mathfrak{p}) = (\mathfrak{p} \to \mathfrak{q}) = 1$ then $\mathfrak{o} \to \mathfrak{q} = 1$
- (vi) $(\mathfrak{o} \to \mathfrak{p}) \to ((\mathfrak{q} \to \mathfrak{o}) \to (\mathfrak{q} \to \mathfrak{p})) = 1$
- (vii) $\mathfrak{o} \to (\mathfrak{p} \to \mathfrak{q}) = \mathfrak{p} \to (\mathfrak{o} \to \mathfrak{q})$

(viii) $\mathfrak{o} \to 0 = \mathfrak{o} \to 1^* = \mathfrak{o}^*$ (ix) $(\mathfrak{o}^*)^* = \mathfrak{o}$

(x) $(\mathfrak{o}^* \to \mathfrak{p}^*) = \mathfrak{p} \to \mathfrak{o}.$

Proposition 2.3[3]. Let $(\wp, \lor, \land, \otimes, \rightarrow, 0, 1)$ be a residuated lattice. Then the following are satisfied for all $\wp, \wp, q \in \wp$,

(i) $(\mathfrak{o} \otimes \mathfrak{p}) \to \mathfrak{q} = \mathfrak{o} \to (\mathfrak{p} \to \mathfrak{q})$

(ii) $(\mathfrak{o} \otimes \mathfrak{p}) \otimes \mathfrak{q} = \mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{q})$

(iii) $\mathfrak{o} \otimes \mathfrak{p} = \mathfrak{p} \otimes \mathfrak{o}$

Definition 2.4[2]. Let $(\wp, \lor, \land, *, \rightarrow, 1)$ be a *LW*-algebra. If a binary operation " \otimes " on \wp satisfied $\mathfrak{o} \otimes \mathfrak{p} = (\mathfrak{o} \rightarrow \mathfrak{p}^*)^*$ for all $\mathfrak{o}, \mathfrak{p} \in \wp$. Then $(\wp, \lor, \land, \otimes, \rightarrow, *, 0, 1)$ is called a *RLW*-algebra. **Definition 2.5[6].** The *RLW*-algebra \wp is called a *RLHW*-algebra if it satisfied $\mathfrak{o} \lor \mathfrak{p} \lor ((\mathfrak{o} \land \mathfrak{p}) \rightarrow \mathfrak{q}) = 1$ for all $\mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \wp$.

In a *RLHW*-algebra Ø, the following are hold,

(i) $\mathfrak{o} \otimes \mathfrak{p} \in \mathscr{D}$

(ii) $\mathfrak{o} \otimes (\mathfrak{o} \otimes \mathfrak{p}) = (\mathfrak{o} \otimes \mathfrak{p}); \ \mathfrak{o} \to (\mathfrak{o} \to \mathfrak{p}) = (\mathfrak{o} \to \mathfrak{p})$

(iii) $\mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{q}) = (\mathfrak{o} \otimes \mathfrak{p}) \otimes (\mathfrak{o} \otimes \mathfrak{q}); \mathfrak{o} \to (\mathfrak{p} \to \mathfrak{q}) = (\mathfrak{o} \to \mathfrak{p}) \to (\mathfrak{o} \to \mathfrak{q})$

Definition 2.6[2]. Let \wp be a lattice. An ideal *I* of \wp is a nonempty subset of \wp is called a lattice ideal, if it satisfied the following axioms for all $\mathfrak{o}, \mathfrak{p} \in \wp$,

(i) $o \in I, p \in L \text{ and } p \leq o \text{ imply } p \in I$

(ii) $\mathfrak{o}, \mathfrak{p} \in I$ implies $\mathfrak{o} \lor \mathfrak{p} \in I$.

Definition 2.7[4]. A non-empty subset *I* of a *W*-algebra \wp is an ideal, if it satisfied the following axioms for all $\mathfrak{o}, \mathfrak{p} \in \wp$,

(i) $0 \in I$ (ii) $\mathfrak{o} \in I$ and $\mathfrak{p} \leq \mathfrak{o}$ imply $\mathfrak{p} \in I$.

3. MAIN RESULTS

3.1 Positive Implicative and Associative WI-ideals of RLW- algebras.

In this section, we consider positive implicative and associative WI-ideals of RLW-algebra and explore some of its properties.

Definition 3.1.1. A non-empty subset *I* of a *RLW*-algebra \wp is called a positive implicative *WI*-ideal of \wp if it satisfies the following,

(i) $0 \in I$;

(ii) $(\mathfrak{p} \otimes (\mathfrak{q} \otimes \mathfrak{p})) \otimes \mathfrak{o} \in I$ and $\mathfrak{o} \in I$ imply $\mathfrak{p} \in I$ for all $\mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \wp$;

(iii) $((\mathfrak{p} \to (\mathfrak{q} \to \mathfrak{p})^*)^* \to \mathfrak{o})^* \in I \text{ and } \mathfrak{o} \in I \text{ imply } \mathfrak{p} \in I \text{ for all } \mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \mathcal{P}.$

Example 3.1.2. Consider a set $\wp = \{0, u, v, w, s, t, 1\}$. Define a partial ordering " \leq " on \wp , such that $0 \leq u \leq v \leq w \leq s \leq t \leq 1$ with a binary operations " \otimes " and " \rightarrow " and a quasi complement "*" on \wp as in following tables 3.1.1 and 3.1.2.

Table 1. Complement

Ø	\mathfrak{o}^*
0	1
u	\$
v	\$
w	V
\$	V
t	0
1	0

Tahla	2	Imr	lice	ation
Table	4.	m	JIIC	auoi

\rightarrow	0	U	V	w	8	t	1
0	1	1	1	1	1	1	1
u	8	1	1	8	\$	1	1
v	\$	t	1	8	\$	1	1
w	v	v	v	1	1	1	1
8	v	v	v	t	1	1	1
t	0	v	v	8	\$	1	1
1	0	u	v	w	\$	t	1

Define V and \wedge operations on \wp as follows:

$$(\mathfrak{o} \lor \mathfrak{p}) = (\mathfrak{o} \to \mathfrak{p}) \to \mathfrak{p},$$

 $(\mathfrak{o} \land \mathfrak{p}) = (\mathfrak{o}^* \to \mathfrak{p}^*) \to \mathfrak{p}^*)^*; \ \mathfrak{o} \otimes y = (\mathfrak{o} \to \mathfrak{p}^*)^* \text{ for all } \mathfrak{o}, \mathfrak{p} \in \mathscr{D}.$

Then, \mathscr{D} is a *RLW*-algebra. It is easy to verify that, $I_1 = \{0, u, s\}$ is an positive implicative *WI*-ideal of \mathscr{D} . But $I_2 = \{v, w, s\}$ is not a positive implicative *WI*-ideal of \mathscr{D} . Since, $((w \otimes (s \otimes w)) \otimes v) = 0 \notin I_2$.

Proposition 3.1.3. Let I be a non-empty subset of \wp . If I is a positive implicative WI-ideal of \wp , then I is

a WI-ideal of p.

Proof. Let I be a positive implicative WI-ideal of \mathcal{D} then from the definition 3.1.1 we have $0 \in I$ and

replace $\mathfrak{o} = \mathfrak{p}$ and $\mathfrak{q} = \mathfrak{o}$ for all $\mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \mathcal{D}$ in (ii) of the definition 3.1.1, $((\mathfrak{o} \otimes (\mathfrak{o} \otimes \mathfrak{o})) \otimes \mathfrak{p}) \in I$, $(((\mathfrak{o} \rightarrow (\mathfrak{o} \otimes \mathfrak{o}))^*) \rightarrow \mathfrak{p})^* \in I$ and $\mathfrak{p} \in I$ for all $\mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \mathcal{D}$

 $(\mathfrak{o} \otimes \mathfrak{O}) \otimes \mathfrak{p} \in I, (((\mathfrak{o} \to \mathfrak{O})^* \to \mathfrak{p})) \in I \text{ and } \mathfrak{p} \in I \text{ implyo} \in I \text{ for all } \mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \mathcal{P}$

 $\mathfrak{o} \otimes \mathfrak{p} \in I$, $(\mathfrak{o} \to \mathfrak{p})^* \in I$ and $\mathfrak{p} \in I$ imply $\mathfrak{o} \in I$ for all $\mathfrak{o}, \mathfrak{p}, \mathfrak{q} \in \mathscr{P}$

Thus, I is a WI-ideal of \wp .

Proposition 3.1.4. Let *I* be a *WI*-ideal \mathcal{D} . Then *I* is a positive implicative *WI*-ideal \mathcal{D} if and only if $\mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{o}) \in I$, $(\mathfrak{o} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \in I$ implies $\mathfrak{o} \in I$ for all $\mathfrak{o}, \mathfrak{p} \in \mathcal{D}$.

Proof. Let *I* be a positive implicative *WI*-ideal of \mathscr{D} and let $\mathfrak{o} = 0, \mathfrak{p} = \mathfrak{o}, \mathfrak{q} = \mathfrak{p}$ in $\mathfrak{p} \otimes (\mathfrak{q} \otimes \mathfrak{p}) \otimes \mathfrak{o} \in I$, $(((\mathfrak{p} \to (\mathfrak{q} \to \mathfrak{p})^*)^* \to \mathfrak{o})^*) \in I$ and $\mathfrak{o} \in I$ imply $\mathfrak{p} \in I$ then, we have $(\mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{o})) \otimes \mathfrak{o} \in I$, $(((\mathfrak{o} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to \mathfrak{o})^*) \in I$ and $\mathfrak{o} \in I$, which implies that, $\mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{o}) \in I$, $((\mathfrak{o} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \in I$ implies $\mathfrak{o} \in I$.

Conversely, since *I* is a *WI*-ideal \wp , $\mathfrak{p} \otimes (\mathfrak{q} \otimes \mathfrak{p}) \in I$, $((\mathfrak{p} \to (\mathfrak{q} \to \mathfrak{p})^*)^* \in I$.

Thus, we have $p \in I$.

Proposition 3.1.5. Let *I* be a non-empty subset of *RLW*-algebra \mathcal{P} . If *I* is a positive implicative *WI*-ideal of \mathcal{P} , then it is an implicative *WI*-ideal of \mathcal{P} .

Proof. Let I be a positive implicative WI-ideal of \wp .

We need to prove: I is an implicative WI-ideal of \wp .

Let
$$(\mathfrak{o} \otimes \mathfrak{p}) \otimes \mathfrak{q}, ((\mathfrak{o} \to \mathfrak{p})^* \to \mathfrak{q})^* \in I$$
 an $\mathfrak{p} \otimes \mathfrak{q}, (\mathfrak{p} \to \mathfrak{q})^* \in I$.

It is enough to show that $\mathfrak{o} \otimes \mathfrak{q}, (\mathfrak{o} \to \mathfrak{q})^* \in I$

Here, $(\mathfrak{o} \otimes \mathfrak{p}) \otimes \mathfrak{q} = \mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{q})$

[From (ii) of proposition 2.3]

Copyright@REST Publisher

$(\mathfrak{q}\otimes\mathfrak{p})\otimes\mathfrak{a}=$	[From (iii) of proposition 2.3]
$= (\mathfrak{o} \otimes \mathfrak{q}) \otimes \mathfrak{p})$	[From (ii) of proposition 2.3]
$((\mathfrak{o} \to \mathfrak{p})^* \to \mathfrak{q})^* = (\mathfrak{q}^* \to (\mathfrak{o} \to \mathfrak{p}))^*$	
$= (\mathfrak{o} \to (\mathfrak{q}^* \to \mathfrak{p}))^*$	[From (vii) of proposition 2.2]
$= (\mathfrak{o} \to (\mathfrak{p}^* \to \mathfrak{q}))^*$	[From (x) of proposition 2.2]
$= (\mathfrak{p}^* o (\mathfrak{o} o \mathfrak{q}))^*$	[From (vii) of proposition 2.2]
$=((\mathfrak{o} ightarrow\mathfrak{q})^* ightarrow\mathfrak{p})^*$	[From (x) of proposition 2.2]
Therefore, $((\mathfrak{o} \to \mathfrak{p})^* \to \mathfrak{q})^* = ((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{p})^*$	
We prove that, $(\mathfrak{o} \otimes \mathfrak{q}) \to \mathfrak{p} \leq ((\mathfrak{p} \to \mathfrak{q}) \to ((\mathfrak{o} \otimes \mathfrak{q}) \to \mathfrak{q})$	
Then $((\mathfrak{p} \to \mathfrak{q}) \to ((\mathfrak{o} \otimes \mathfrak{q}) \otimes \mathfrak{p})$	
$(((\mathfrak{o}\otimes\mathfrak{q})\otimes\mathfrak{q})\otimes(\mathfrak{p}\otimes\mathfrak{q})\leq(\mathfrak{o}\otimes\mathfrak{q})\otimes\mathfrak{p}y$ and	
$((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{p} \leq ((\mathfrak{p} \to \mathfrak{q}) \to ((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{q}) \text{ then } (((\mathfrak{p} \to \mathfrak{q}) \to \mathfrak{q}))$	$((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{q}))^* \leq ((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{p})^*$
Since, $((\mathfrak{o} \otimes \mathfrak{q}) \otimes \mathfrak{p}), \mathfrak{p} \otimes \mathfrak{q}, ((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{p})^*, (\mathfrak{p} \to \mathfrak{q})^* \in I$	
We have $((\mathfrak{o} \otimes \mathfrak{q}) \otimes \mathfrak{q}), ((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{q})^* \in I$	
Also, $((\mathfrak{o} \otimes \mathfrak{q}) \otimes \mathfrak{q}) = ((\mathfrak{o} \otimes \mathfrak{q}) \otimes 0) \otimes \mathfrak{q}$	
$=((\mathfrak{p}\otimes\mathfrak{q})\otimes(\mathfrak{p}\otimes\mathfrak{q}))=$	
$(\mathfrak{p}\otimes(\mathfrak{p}\otimes\mathfrak{a})\otimes))\otimes(\mathfrak{p}\otimes\mathfrak{a})=$	
$= ((\mathfrak{a} \otimes (\mathfrak{p} \otimes \mathfrak{a})) \otimes (\mathfrak{p} \otimes \mathfrak{a})) =$	[From (ii) of definition 2.5]
$((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{q})^* = (((\mathfrak{o} \to \mathfrak{q})^* \to 0)^* \to \mathfrak{q})^*$	
$= (((\mathfrak{o} \to \mathfrak{q})^* \to (\mathfrak{0} \to \mathfrak{q})^*)^* \to \mathfrak{q})^*$	
$= ((\mathfrak{o} \to \mathfrak{q})^* \to ((\mathfrak{o} \to \mathfrak{o})^* \to \mathfrak{q})^*)^* \to \mathfrak{q})^*$	[From (i) of proposition 2.2]
$= (((\mathfrak{o} \to \mathfrak{q})^* \to ((\mathfrak{o} \to \mathfrak{q})^* \to \mathfrak{o})^*)^* \to \mathfrak{q})^*$	

From (iii) of definition 2.1, we have

$$(\mathfrak{o} \otimes (\mathfrak{o} \otimes (\mathfrak{o} \otimes \mathfrak{q}))) \otimes \mathfrak{q} = ((\mathfrak{o} \otimes \mathfrak{q}) \otimes (\mathfrak{o} \otimes (\mathfrak{o} \otimes \mathfrak{q})))$$
$$((\mathfrak{o} \to (\mathfrak{o} \to \mathfrak{q})^*)^*)^* \to \mathfrak{q})^* = ((\mathfrak{o} \to \mathfrak{q})^* \to (\mathfrak{o} \to (\mathfrak{o} \to \mathfrak{q})^*)^*)^*$$
Thus, we have $\mathfrak{o} \otimes \mathfrak{q}, (\mathfrak{o} \to \mathfrak{q})^* \in I.$

Proposition 3.1.6. Let *I* be a non-empty subset of *RLHW*-algebra \wp . If *I* is an implicative *WI*-ideal of \wp , then *I* is a positive implicative *WI*-ideal of \wp .

Proof. Let I be an implicative WI-ideal of RLHW-algebra Ø,

Then, we have
$$= \mathfrak{p} \otimes (\mathfrak{q} \otimes \mathfrak{p}), (\mathfrak{p} \to (\mathfrak{q} \to \mathfrak{p})^*)^* \in I$$

Thus, we get $\mathfrak{p} \otimes (\mathfrak{q} \otimes \mathfrak{p}) = \mathfrak{p} \otimes (\mathfrak{p} \otimes \mathfrak{q})$
 $= \mathfrak{p} \otimes \mathfrak{q}$
 $= 0 \in I$ and

[From (ii) of definition 2.5]

 $(\mathfrak{p} \to (\mathfrak{q} \to \mathfrak{p})^*)^* = ((\mathfrak{q} \to \mathfrak{p}) \to \mathfrak{p}^*)^* = ((\mathfrak{p}^* \to \mathfrak{q}^*) \to \mathfrak{p}^*)^*.$

Since, \wp is a *RLHW*-algebra, we get $\mathfrak{p} = \mathfrak{p} \otimes (\mathfrak{q} \otimes \mathfrak{p}), \mathfrak{p} = (\mathfrak{p} \to (\mathfrak{q} \to \mathfrak{p})^*)^* \in I$.

Proposition 3.1.7. Let *M* and *N* be two *WI*-ideals of *RLW*-algebra \mathcal{D} with $M \subseteq N$. If *M* is a positive implicative *WI*-ideal of \mathcal{D} then so is *N*.

Proof. Let $\mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{o}) \in N$. Take $r = \mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{o}), (\mathfrak{o} \to (\mathfrak{p} \to \mathfrak{o})^*)^*, X = \mathfrak{o} \otimes r, (\mathfrak{o} \to r)^* \text{ and } Y = \mathfrak{o}.$ Then, $Y \otimes X = \mathfrak{o} \otimes (\mathfrak{o} \otimes \mathfrak{r})$ $= \mathfrak{a} \otimes (\mathfrak{a} \otimes \mathfrak{a}) \otimes \mathfrak{a} \otimes \mathfrak{a} \otimes \mathfrak{a} =$ $= \mathfrak{a} \otimes \mathfrak{a} \otimes \mathfrak{a} \otimes \mathfrak{a} \otimes \mathfrak{a} \otimes \mathfrak{a} \otimes \mathfrak{a})$ [From (iii) of definition 2.3] $= \mathfrak{o} \otimes (\mathfrak{o} \otimes (\mathfrak{o} \otimes \mathfrak{p}))$ [From (ii) of definition 2.5] $= \mathfrak{o} \otimes (\mathfrak{o} \otimes \mathfrak{p})$ [From (ii) of definition 2.5] $= \mathfrak{o} \otimes (\mathfrak{p} \otimes \mathfrak{o})$ [From (iii) of definition 2.3] = r and $(Y \to X)^* = (\mathfrak{o} \to (\mathfrak{o} \to r)^*)^*$ $= (\mathfrak{o} \to (\mathfrak{o} \to (\mathfrak{o} \to (\mathfrak{p} \to \mathfrak{o})^*)^*)^*)^*$ $= ((\mathfrak{o} \to (\mathfrak{p} \to \mathfrak{o})^*)^*)^* = r^*$ Therefore, $Y \otimes X = r$, $(Y \to X)^* = r^*$ So, $(X \otimes (Y \otimes X) = X \otimes r)$ $= (\mathfrak{o} \otimes r) \otimes r$ $= r \otimes (\mathfrak{o} \otimes r)$ [From (iii) of definition 2.3] $= r \otimes (r \otimes \mathfrak{o})$ [From (iii) of definition 2.3] $= (r \otimes \mathfrak{o})$ [From (ii) of definition 2.5] $\mathfrak{a} \otimes ((\mathfrak{a} \otimes \mathfrak{q}) \otimes \mathfrak{a}) =$ $=(\mathfrak{o}\otimes(\mathfrak{o}\otimes\mathfrak{p}))\otimes\mathfrak{o}$ [From (iii) of definition 2.3] $\mathfrak{a}\otimes(\mathfrak{q}\otimes\mathfrak{q})=\mathfrak{a}$ [From (ii) of definition 2.5] $= \mathfrak{o} \otimes (\mathfrak{o} \otimes \mathfrak{p})$ [From (iii) of definition 2.3] $= \mathfrak{o} \otimes \mathfrak{v} \in M$ and $(X \to (Y \to X)^*)^* = ((\mathfrak{o} \to r)^*) \to r^*)^*$ $= (r \rightarrow (\mathfrak{o} \rightarrow r))^*$ $= (\mathfrak{o} \to (r \to r))^*$ $(X \to (Y \to X)^*)^* = 0 \in M$ So $\mathfrak{o} \in M$ by *M* is a positive implicative *WI*-ideal of \wp . Since $M \subseteq N$, $\mathfrak{o} \otimes r$, $(\mathfrak{o} \to r)^* = X \in N$ implies that $\mathfrak{o} \in N$. Thus, N is a positive WI-ideal of \wp .

3.2. Associative WI-ideals of RLW-algebras.

In this section, we introduce the concept of associative *WI*-ideal of *RLW*-algebra and we find some of its properties with illustrations.

Definition 3.2.1. A subset of \wp is said to be an associative *WI*-ideal of \wp with respect to \mathfrak{o} , where \mathfrak{o} is fixed element of \wp , if it satisfies the following axioms for all $\mathfrak{o}, y \in \wp$ and $\mathfrak{o} \neq 1$,

- (i) $0 \in I$
- (ii) $\mathfrak{p} \otimes \mathfrak{o} \in I$ and $((\mathfrak{q} \otimes \mathfrak{p}) \otimes \mathfrak{o}) \in I$ imply $\mathfrak{q} \in I$
- (iii) $(\mathfrak{p} \to \mathfrak{o})^* \in I \text{ and } ((\mathfrak{q} \to \mathfrak{p})^* \to \mathfrak{o}^*) \text{ imply} \mathfrak{q} \in I.$

Example 3.2.2. Consider a set $\mathcal{D}=\{0, p, q, r, s, t, 1\}$. Define a partial ordering " \leq " on \mathcal{D} , such that $0 \leq a \leq b \leq c \leq d \leq 1$ with a binary operations" \otimes "and " \rightarrow "and a quasi complement "* "on \mathcal{D} as in following tables 3.1.3 and 3.1.4.

Table 4. Implication

Table 3. Complement

۵	\mathfrak{o}^*
0	1
р	r
q	q
r	p
1	0

\rightarrow	0	p	q	r	1
0	1	1	1	1	1
р	r	1	1	1	1
q	q	r	1	1	1
r	р	q	1	1	1
1	0	р	q	r	1

Define \lor and \land operations on \wp as follows:

$$(\mathfrak{o} \lor \mathfrak{p}) = (\mathfrak{o} \to \mathfrak{p}) \to \mathfrak{p}$$

 $(\mathfrak{o} \land \mathfrak{p}) = (\mathfrak{o}^* \to \mathfrak{p}) \to \mathfrak{p}^*)^*; \ \mathfrak{o} \otimes \mathfrak{p} = (\mathfrak{o} \to \mathfrak{p}^*)^* \text{ for all } \mathfrak{o}, \mathfrak{p} \in \wp.$

Then, \wp is a *RLW*-algebra. It is easy to verify that, $I_2 = \{0, q, r\}$ is an associative *WI*-ideals of \wp .

Proposition 3.2.3. Every associative WI-ideal with respect to o contains o itself.

Proof. Let *I* be an associative *WI*-ideal of *p*.

If $\mathfrak{o} = 0$ then $\mathfrak{p} \otimes 0$, $(\mathfrak{p} \to 0)^* \in I$ and $(\mathfrak{q} \otimes y) \otimes 0$, $((\mathfrak{q} \to \mathfrak{p})^* \to 0)^* \in I$ imply $\mathfrak{q} \in I$.

So $\mathfrak{p} \in I$ and $\mathfrak{q} \otimes \mathfrak{p}$, $(\mathfrak{q} \to \mathfrak{p})^* \in I$ imply $\mathfrak{q} \in I$.

Hence, we have *I* is a *WI*-ideal of \wp that contain 0. If $\mathfrak{o} = 1$ then I = A.

If $\mathfrak{o} \neq 0$, 1, take $\mathfrak{p} = 0$ and $\mathfrak{q} = \mathfrak{o}$ then $(\mathfrak{o} \otimes 0) \otimes \mathfrak{o} = (0 \to \mathfrak{q})^* = 1^* = 0 \in I$,

 $((\mathfrak{o} \to 0)^* \to \mathfrak{o})^* = (\mathfrak{o} \to \mathfrak{o})^* = 0 \in I \text{ and } 0 \otimes \mathfrak{o}, (0 \to \mathfrak{o})^* = 0 \in I \text{ imply } \mathfrak{o} \in I.$

Proposition 3.2.4. Every associative *WI*-ideal is a *WI*-ideal of *RLW*-algebra \wp .

Proof. If $\mathfrak{p} \in I$ and $\mathfrak{o} \otimes \mathfrak{p}, (\mathfrak{o} \to \mathfrak{p})^* \in I$ then $\mathfrak{p} \otimes \mathfrak{0}, (\mathfrak{p} \to \mathfrak{0})^* \in I$ and

 $(\mathfrak{o} \otimes \mathfrak{p}) \otimes 0$, $((\mathfrak{o} \to \mathfrak{p})^* \to 0)^* \in I$. Since *I* is an associative *WI*-ideal of \wp then $\mathfrak{o} \in I$.

Proposition 3.2.5. Let *I* be a *WI*-ideal of \wp . *I* is an associative *WI*-ideal if and only if $((\mathfrak{q} \otimes \mathfrak{p}) \otimes \mathfrak{o})$, $(((\mathfrak{q} \to \mathfrak{p})^* \to \mathfrak{o})^*)$ implies $\mathfrak{q} \otimes (\mathfrak{p} \otimes \mathfrak{o})$, $((z \to (\mathfrak{p} \to \mathfrak{o})^*)^*) \in I$.

Proof. If $(\mathfrak{q} \otimes \mathfrak{p}) \otimes \mathfrak{o}$, $(((\mathfrak{q} \to \mathfrak{p})^* \to \mathfrak{o})^*)$ and $\mathfrak{p} \otimes \mathfrak{o}$, $(\mathfrak{p} \to \mathfrak{o})^* \in I$ then

$$\mathfrak{q} \otimes (\mathfrak{p} \otimes \mathfrak{o}), ((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^*) \text{ and } \mathfrak{p} \otimes \mathfrak{o}, (\mathfrak{p} \to \mathfrak{o})^* \in I$$

Since *I* is a *WI*-ideal of \wp , then $q \in I$.

Conversely, let $(\mathfrak{q} \otimes \mathfrak{p}) \otimes \mathfrak{o}$, $(((\mathfrak{q} \rightarrow \mathfrak{p})^* \rightarrow \mathfrak{o})^*) \in I$ then $\left(\left(\left(\mathfrak{q}\otimes\left(\mathfrak{p}\otimes\mathfrak{o}\right)\right)\otimes\left(\mathfrak{q}\otimes\mathfrak{p}\right)\right)\otimes\mathfrak{o}\right)=\left(\left(\left(\mathfrak{q}\otimes\mathfrak{p}\right)\otimes\left(\mathfrak{q}\otimes\mathfrak{o}\right)\right)\otimes\left(\mathfrak{q}\otimes\mathfrak{p}\right)\right)\otimes=\mathfrak{o}\otimes0=0\in I$ Hence, $\left(\left((\mathfrak{q}\otimes(\mathfrak{p}\otimes\mathfrak{o}))\otimes(\mathfrak{q}\otimes\mathfrak{p})\right)\otimes\mathfrak{o}\right)\in I$ (3.2.1)Equation (3.2.1) comes from $q \otimes p \leq (p \otimes o) \otimes (q \otimes o)$ Which implies $(q \otimes o) \otimes (p \otimes o) \leq q \otimes p$ and $((((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to (\mathfrak{q} \to \mathfrak{p})^*)^* \to \mathfrak{o})^*) = ((((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to \mathfrak{o})(\mathfrak{q} \to \mathfrak{p})^*)^*)$ $=(((((\mathfrak{q} \to \mathfrak{o})^* \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to (\mathfrak{q} \to \mathfrak{p})^*)^*) = 1^* = 0 \in I$ Hence, $((((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to (\mathfrak{q} \to \mathfrak{p})^*)^* \to \mathfrak{o})^*) \in I$ (3.2.2)Equation (3.2.2) comes from $(q \rightarrow p) \leq (p \rightarrow o) \rightarrow (q \rightarrow o)$ Which implies $(((\mathfrak{q} \to \mathfrak{o})^* \to (\mathfrak{p} \to \mathfrak{o})^*)^*) \leq ((\mathfrak{q} \to \mathfrak{p})^*).$ From our assumption that, $\mathfrak{q} \otimes (\mathfrak{p} \otimes \mathfrak{o})$, $((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^*) \in I$ and *I* is an associative *WI*-ideal. Thus, we have $q \otimes (\mathfrak{p} \otimes \mathfrak{o}), ((q \to (\mathfrak{p} \to \mathfrak{o})^*)^*) \in I$ **Proposition 3.2.6.** Let I be a WI-ideal of \wp . I is an associative WI-ideal if and only if $(\mathfrak{p} \otimes \mathfrak{o}) \otimes \mathfrak{o}$, $((\gamma \rightarrow \gamma))$ $\mathfrak{o})^* \to \mathfrak{o})^* \in I$ implies $\mathfrak{p} \in I$. **Proof.** If $(\mathfrak{p} \otimes \mathfrak{o}) \otimes \mathfrak{o}$, $((\mathfrak{p} \to \mathfrak{o})^* \to \mathfrak{o})^* \in I$ then $\mathfrak{p} \otimes (\mathfrak{o} \otimes \mathfrak{o})$, $((\mathfrak{p} \to (\mathfrak{o} \to \mathfrak{o})^*)^* \in I$. So, $\mathfrak{p} \otimes \mathfrak{0} = \mathfrak{0}, (\mathfrak{p} \to \mathfrak{0})^* = \mathfrak{p} \in I$ Conversely, $\left(\left(\left(\mathfrak{q}\otimes(\mathfrak{p}\otimes\mathfrak{o})\right)\otimes\mathfrak{o}\right)\otimes\mathfrak{o}\right)\otimes((\mathfrak{q}\otimes\mathfrak{p})\otimes\mathfrak{o})\right)$ $= (((\mathfrak{q} \otimes \mathfrak{p}) \otimes (\mathfrak{q} \otimes \mathfrak{o})) \otimes \mathfrak{o}) \otimes \mathfrak{o}) \otimes (\mathfrak{o} \otimes (\mathfrak{q} \otimes y)))$ (3.2.3) $= \left(\left((0 \otimes 0) \otimes \mathfrak{o} \right) \otimes \mathfrak{o} \right) \otimes ((\mathfrak{o} \otimes \mathfrak{q}) \otimes (\mathfrak{o} \otimes y))$ $= \left(\left((0 \otimes 0) \otimes (0 \otimes 0) \otimes (0 \otimes 0) \right) \right) \otimes \left((0 \otimes 0) \right)$ $= \left(\left(\left(\mathfrak{a} \otimes (\mathfrak{o} \otimes \mathfrak{o}) \right) \otimes \mathfrak{a} \right) \right) \otimes \mathfrak{o} \right) \right)$ $= (((\mathfrak{a} \otimes \mathfrak{a}) \otimes \mathfrak{a}))) =$ $= ((\mathfrak{a} \otimes \mathfrak{o}) \otimes \mathfrak{a})) =$ $= ((0 \otimes \mathfrak{o}) \otimes 0))$ $= (0 \otimes (0 \otimes 0))$ $= 0 \otimes \mathfrak{o} = 0 \in I$ and $((((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to \mathfrak{o})^* \to \mathfrak{o})^* \to ((\mathfrak{q} \to \mathfrak{p})^* \to \mathfrak{o})^*)^*$ $=((((\mathfrak{q}\to(\mathfrak{p}\to\mathfrak{o})^*)^*\to\mathfrak{o})^*\to\mathfrak{o})^*\to((\mathfrak{q}\to\mathfrak{p})^*\to\mathfrak{o})^*)^*\to 0)^*$ $=((((\mathfrak{q}\to(\mathfrak{p}\to\mathfrak{o})^*)^*\to\mathfrak{o})^*\to\mathfrak{o})^*\to(((\mathfrak{q}\to\mathfrak{o})^*\to(\mathfrak{p}\to\mathfrak{o})^*)^*\to(\mathfrak{q}\to\mathfrak{p})^*)^*)^*$ (3.2.4) $=((((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to \mathfrak{o})^* \to \mathfrak{o})^* \to ((\mathfrak{q} \to \mathfrak{p})^* \to \mathfrak{o})^*) \to^* (((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to \mathfrak{o})^* \to (\mathfrak{q} \to \mathfrak{p})^*)^*)^*$ $=((((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to \mathfrak{o})^* \to \mathfrak{o})^* \to ((\mathfrak{q} \to (\mathfrak{p} \to \mathfrak{o})^*)^* \to \mathfrak{o})^*) \to (\mathfrak{q} \to \mathfrak{p})^*)^*)^* \to ((\mathfrak{q} \to \mathfrak{p})^* \to \mathfrak{o})^*)^*$

 $\leq (((q \to p)^* \to o)^* \to ((q \to p)^* \to o)^*)^* = 0$ Hence, $((((q \otimes (p \otimes o)) \otimes o) \otimes o) \otimes o) \otimes ((q \otimes y) \otimes o))$, $((((q \to (p \to o)^*)^* \to o)^* \to o)^* \to o)^* \to ((q \to p)^* \to o)^*)^* \in I$. From the given cpndition, we have $((p \otimes o) \otimes o)$, $(((p \to o)^* \to o)^* \in I)^* \in I$. From the proposition 3.2.4, we have *I* is an associative *WI*-ideal. Equation (3.2.3) comes from $q \otimes p \leq (p \otimes o) \otimes (q \otimes o)$, $(q \to p) \leq (p \to o) \to (q \to o)$ So $((q \otimes o) \otimes (p \otimes o)) \leq q \otimes p$, $(((q \to o)^* \to (p \to o)^*)^* \leq (q \to p)^*$ that, $((q \otimes o) \otimes (p \otimes o)) \otimes (q \otimes p) = 0$, $((((q \to o)^* \to (p \to o)^*)^* \to (q \to p)^*) = 0$ and the inequality in (3.2.3) from $(o \otimes p) \leq (q \otimes o) \to (z \otimes p)$, $o \to p \leq (q \to o) \to (q \to p)$ then $(q \otimes p) \otimes (q \otimes o) \leq o \otimes p$.

4. CONCLUSION

In this paper, we have studied positive implicative *WI*-ideal and associative *WI*-ideal of *RLW*-algebra and investigated some of their properties. Also, we have analyzed the relationship of positive implicative *WI*-ideal with implicative *WI*-ideal and WI-ideal, and hence an associative *WI*-ideal with *WI*-ideal. Moreover, we provide the condition equivalent for both positive implicative *WI*-ideal and associative *WI*-ideal.

REFERENCES

- [1]. M.Wajsberg, Beitrage zum Metaaussagenkalkul, Monat. Mat. Phy., 42 (1935) 221-242.
- [2]. J.M.Font, A.J.Rodriguez and A.Torrens, Wajsberg algebras, STOCHASTICA, 8 (1) (1984) 5-31.
- [3]. M.Word, R. P. Dilworth, Residuated lattices, Transaction of the American Mathe matical Society 45 (1939) 335-354.
- [4]. A.Ibrahim and C.Shajitha Begum, On WI-Ideals of lattice Wajsberg algebras, Global Journal of Pure and Applied Mathematics, 13(10) (2017) 7237-7254.
- [5]. A.Ibrahim and R.Shanmugapriya, Anti FWI-Ideals of residuated lattice Wajsberg algebras, Advances in mathematics:Scientific Journal 8(2019) 300-306. (Scopus)