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Abstract. Differential equations constitute a fundamental tool in modeling various natural phenomena 

across scientific disciplines such as physics, engineering, and finance. We provide an overview of 

fractional differential equations, focusing on the computational requirements associated with their 

numerical solutions from a computer science perspective. We analyze the computational intricacies 

concerning First-Order Linear ODE, First-Order Nonlinear ODE, Second-Order Linear ODE, Second-

Order Nonlinear ODE, Heat Equation (PDE), and Wave Equation (PDE). This comparative assessment 

delves into the computational demands of solving these equations using differential equation 

methodologies. While analytical solutions provide deep insights, obtaining numerical solutions, 

particularly in higher dimensions, remains a persistent challenge. Finite difference methods commonly 

employed for numerical solutions, In higher-dimensional problems, traditional numerical methods face 

challenges stemming from an exponential surge in grid points and the consequent demand for substantially 

decreased time step sizes. This paper explores the challenges posed by higher-dimensional differential 

equations in numerical solutions. It highlights the infeasibility of finite difference methods in such 

scenarios and emphasizes the need for innovative numerical techniques capable of efficiently handling the 

complexities of higher-dimensional differential equations. Overcoming these challenges is crucial for 

advancing our understanding and modeling capabilities in complex real-world systems governed by 

differential equations. Continued research efforts strive to develop novel numerical methodologies capable 

of addressing these challenges, aiming to broaden the scope of solvable higher-dimensional differential 

equations and expand their application across diverse scientific domains. 

Keywords: Fractional equations, ordinary differential equation, GRA method 

1. INTRODUCTION 

Differential equations hold immense significance in mathematics and serve as crucial descriptors for physical 

phenomena. Attaining solutions for these equations stands as a pivotal task. While certain types of differential 

equations offer clear, direct analytical solutions, the advancement of computational methods has notably eased 

the process of solving equations. Yet, comprehending these solutions and their application in describing real-world 

processes can pose challenges in some scenarios. Even with the significant advancements in computational 

methodologies during the 21st century, there remains a persistent demand for analytical studies. This is primarily 

because analytical solutions generally offer a transparent understanding of the obtained solutions. For instance, 

leveraging expansions in series involving orthogonal polynomials has proven immensely valuable in solving 

numerous physical problems, as evidenced in various research references. [1], [15], and [16] are indicative of the 

utility and relevance of these approaches in addressing a wide array of physical problems. The variation iteration 

method [1-24] stands as a novel numerical approach aimed at solving both linear and nonlinear partial differential 

equations devoid of linearization or reliance on small perturbations. Drawing inspiration from the general 

Lagrange multiplier method [26], the variation iteration method primarily emerged to tackle nonlinear quandaries 

in quantum mechanics. Within this method, a correction function is formulated utilizing a general Lagrange 

multiplier, discerned through variation theory. An analytical solution is then derived from a trial function 

incorporating potential unknown constants, subsequently determined by progressively applying boundary 
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conditions. Demonstrated effectiveness lies in the method's capability to effectively, readily, and accurately solve 

a broad spectrum of nonlinear problems, with approximations converging swiftly toward precise solutions. In 

contrast, the differential transform method, initially introduced by Zhou [31], adopts a different approach. This 

method devises an analytical solution structured in polynomial form, diverging from conventional high-order 

Taylor series methods that necessitate symbolic computation of requisite function derivatives. The differential 

transform process represents an iterative technique for attaining analytical differential equations. 

The concept of fractional derivatives emerges naturally when considering differential operations like 𝜕𝑢/𝜕𝑥 and 

𝜕2𝑢/𝜕𝑥2; it suggests the plausibility of 𝜕1.5𝑢/𝜕𝑥1.5. Fractional equations offer a means to describe certain 

physical phenomena more precisely than classical integer order differential equations [1]. These fractional 

differential equations serve as a potent tool for characterizing memory and hereditary traits exhibited by diverse 

substances. Specifically, fractional diffusion equations hold substantial significance in various research domains 

such as semiconductor studies, hydrogeology, bioinformatics, finance [2], and numerous other scientific areas [3–

6]. Their application proves instrumental in elucidating complex dynamics within these systems, reflecting their 

broad utility in modeling intricate real-world phenomena. Rajeev and Kushwaha [7] introduced a mathematical 

model delineating the time fractional anomalous diffusion process inherent in a generalized Stefan problem, 

representing a specific instance of a shoreline problem. Meanwhile, space fractional advection-diffusion equations 

emerge in scenarios where velocity variations exhibit heavy-tailed distributions, portraying particle movement 

while considering the comprehensive variations in the flow field across the entire system [8]. FDEs generally fall 

into two primary categories: time fractional differential equations and space fractional differential equations. 

Research into fractional ordinary equations and fractional order control systems has also been explored [9, 10]. 

Notably, the stability analysis of fractional order control systems has garnered significant attention within the 

academic community [11, 12]. For instance, Maione [13] delved into investigating the Laguerre continued fraction 

expansion of the Tustin fractional discrete-time operator. These studies contribute to a deeper understanding of 

the behavior and properties of systems governed by fractional calculus, showcasing diverse applications across 

various scientific disciplines. Absolutely, differential equations serve as foundational tools across multiple fields 

like physics, engineering, and finance, among others. However, obtaining numerical solutions for these equations 

has posed a persistent challenge. Finite difference methods, while effective in many cases, encounter limitations 

in higher dimensions. The significant increase in the number of grid points required in higher dimensions, coupled 

with the need for reduced time step sizes, often renders finite difference methods impractical or computationally 

demanding. This limitation prompts the exploration and development of alternative numerical techniques capable 

of handling the challenges posed by higher-dimensional differential equations without encountering grid and step 

size constraints. 

2. MATERIALS AND METHOD 

Alternatives (Equations): 

1. First-Order Linear ODE:  

A first-order linear ordinary differential equation (ODE) is an equation involving a derivative of a function (y) 

with respect to an independent variable (x) in the form: 

dy / dx P(x)⋅y=Q(x) 

Here, (P(x)) and (Q(x)) are functions of (x) that determine the behavior of the differential equation. 

The equation is linear because y and its derivative appear in a linear fashion (i.e., to the first power, not squared 

or cubed, etc.). 

The general strategy to solve a first-order linear ODE involves identifying an integrating factor, often denoted as 

μ(x), which is a function that helps in simplifying the equation. This integrating factor is calculated as: 

μ(x)=e∫P(x)dx 

Once the integrating factor is determined, the equation is multiplied throughout by this factor to transform it into 

a form that allows easier integration. After simplification and integration, the general solution for y(x) can be 

obtained. These types of differential equations are fundamental in various scientific fields, including physics, 
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engineering, economics, and biology, among others, as they model various real-world phenomena where the rate 

of change of a quantity is proportional to the quantity itself, modified by other functions of the independent 

variable. 

2. First-Order Nonlinear ODE:  

A first-order nonlinear ordinary differential equation (ODE) involves a function y(x) and its derivative dy / dx 

where the highest derivative present is of the first order, but the equation is nonlinear due to nonlinear relationships 

between the function, its derivative, and/or the independent variable x. It is expressed in the form: 

dy / dx  = f (x,y) 

Here: 

 dx/dy  represents the first derivative of y with respect to the independent variable x. 

 f(x,y) is a function that can involve products, powers, trigonometric functions, exponentials, or other 

nonlinear terms of x and y. 

Unlike linear ODEs, where the equation is a linear combination of y, dx/dy, and functions of x, nonlinear ODEs 

can have more complex behaviors and solutions due to the nonlinear relationships present in the equation. 

Solving nonlinear ODEs generally involves various techniques depending on the specific form of the equation, 

such as separation of variables, substitution methods, integrating factors, or even numerical methods when 

analytical solutions are difficult or impossible to find. Nonlinear ODEs are extensively used in modeling complex 

systems in physics, biology, chemistry, engineering, economics, and many other fields where the relationships 

between variables are not purely proportional or additive, leading to more intricate and diverse behaviors. 

3. Second-Order Linear ODE:  

A second-order linear ordinary differential equation (ODE) involves a function y(x) and its derivatives up to the 

second order, usually expressed in the form: 

d2y/ dx2+P(x)⋅ dy / dx +Q(x)⋅y=R(x) 

Here: 

 d2y/ dx2 represent the second derivative of y with respect to the independent variable x. 

 dy /dx denotes the first derivative of y with respect to x. 

 P(x), Q(x), and R(x) are functions of x that define the behavior of the equation. 

The equation is termed "linear" because y, its first derivative dy / dx, and its second derivative d2y/ dx2 appear in 

the equation to the first power, without being multiplied together or raised to other powers. However, P(x), Q(x), 

and R(x) can be arbitrary functions of x. 

The general solution to a second-order linear ODE involves finding particular solutions that satisfy the equation. 

This can be done using various methods, such as the method of undetermined coefficients, variation of parameters, 

or using the characteristic equation when the equation is homogeneous. These types of equations are crucial in 

physics and engineering, describing various natural phenomena, such as harmonic oscillations (e.g., in mechanical 

systems like springs), electrical circuits, vibrating systems, and more complex physical systems. They also appear 

in mathematical models of diverse fields like biology, economics, and chemistry. 

4. Second-Order Nonlinear ODE:  

A second-order nonlinear ordinary differential equation (ODE) involves a function y(x) and its derivatives up to 

the second order, where the equation expresses nonlinear relationships between the function, its derivatives, and/or 

the independent variable x. It is typically expressed in the form: 

d2y/ dx2 = f (x,y, dy /dx) 
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Here: 

 d2y/ dx2 represents the second derivative of y with respect to the independent variable x. 

 f(x,y, dy /dx) is a function that includes nonlinear terms involving x, y, and/or dy /dx. 

Unlike second-order linear ODEs, where the equation involves linear combinations of y, its derivatives, and 

functions of x, second-order nonlinear ODEs exhibit nonlinear relationships between these components, leading 

to more complex behavior and solutions. 

Solving second-order nonlinear ODEs can be challenging and often involves a wide range of methods, including 

substitution, transforming equations into standard forms, special functions, numerical techniques, and perturbation 

methods, among others. Sometimes, closed-form solutions are difficult or impossible to find, especially for more 

complex nonlinear ODEs. Second-order nonlinear ODEs find applications in various fields, including physics 

(e.g., in modeling nonlinear oscillations, chaotic systems), biology (e.g., population dynamics), mechanics (e.g., 

in nonlinear systems of particles), and many other areas where the relationships between variables are nonlinear, 

giving rise to intricate and often rich behavior. 

5. Heat Equation (PDE):  

The heat equation is a partial differential equation (PDE) that describes how the distribution of heat evolves over 

time in a given region. It's a fundamental equation in the study of heat transfer and diffusion phenomena. The one-

dimensional form of the heat equation is: 

∂u/∂t =α ∂2u/∂x2 

Here: 

 u(x,t) represents the temperature distribution in space x and time t. 

 ∂u/∂t  denotes the rate of change of temperature with respect to time. 

 ∂2u/∂x2represents the second derivative of temperature with respect to space, describing how the 

temperature changes with position. 

 α is the thermal diffusivity, a constant that characterizes the material's ability to conduct heat. 

The heat equation describes how temperature changes at each point in the material over time, based on the 

material's ability to conduct heat. It illustrates how heat diffuses through a medium, causing the temperature to 

smooth out and approach an equilibrium state over time. 

Solving the heat equation involves finding the temperature distribution u(x,t) as a function of space and time, 

given initial conditions (the temperature distribution at t=0) and, potentially, boundary conditions that specify 

constraints at the boundaries of the region. The heat equation has broad applications in various fields, including 

physics, engineering, biology, and finance. It's used to model heat flow in materials, diffusion processes, the 

behavior of physical systems, and even in financial mathematics to describe the diffusion of stock prices over 

time. 

6. Wave Equation (PDE):  

The wave equation is a partial differential equation (PDE) that describes how waves propagate through a medium, 

whether it's a mechanical wave in a physical medium like a string, sound waves in air, or electromagnetic waves 

like light. The one-dimensional form of the wave equation is: 

∂2u/∂t2=c2. ∂2u/∂x2 

Here: 

 u(x,t) represents the displacement or amplitude of the wave as a function of position x and time t. 
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 ∂2u/∂t2 denotes the second derivative of u with respect to time, representing the acceleration or change 

in the wave's behavior over time. 

 ∂2u/∂x2represents the second derivative of u with respect to space, describing how the wave behaves in 

space. 

 c is the wave speed, which characterizes how fast the wave travels through the medium. 

The wave equation describes how disturbances or variations in the medium propagate and evolve over time. It 

governs how waves move, interact, and behave in the given medium, showing how disturbances spread out and 

propagate. 

Solving the wave equation involves finding the function u(x,t) that satisfies the equation, given initial conditions 

(the initial displacement and velocity of the medium) and potentially boundary conditions that describe constraints 

at the boundaries of the medium. This equation is foundational in physics and engineering, as it's used to model 

various wave phenomena in different fields, including acoustics, optics, seismology, electromagnetism, and more. 

Understanding wave behavior through the wave equation is crucial in designing and analyzing systems that 

involve waves and wave-like phenomena. 

Evaluation Parameters: 

Analytical Solvability: Analytical solvability serves as a fundamental criterion in evaluating differential 

equations, dictating the ease or difficulty in finding exact, closed-form solutions without resorting to numerical 

approximation. A score of 1 denotes equations posing considerable challenges or those requiring complex 

techniques or transformations, often defying traditional analytical methods. These equations might lack known 

solution techniques, demanding advanced mathematical tools or remaining unsolved in many cases. Conversely, 

a score of 5 signifies equations that readily yield to analytical approaches, allowing straightforward application of 

established mathematical methods to derive precise solutions. Such equations tend to possess known solution 

forms or readily reducible structures, simplifying the process for mathematicians or scientists to derive explicit 

mathematical expressions representing their behavior. Evaluating analytical solvability aids in understanding the 

accessibility and tractability of differential equations, impacting their practical usability in various scientific, 

engineering, and mathematical contexts. 

Existence and Uniqueness of Solutions: The criterion of existence and uniqueness of solutions embodies the 

fundamental nature of differential equations, delineating whether solutions are well-defined and singular. A score 

of 1 designates equations that either lack solutions entirely within the prescribed context or have multiple, 

conflicting solutions, leading to ambiguity or inconsistency in their interpretations. These equations might exhibit 

behaviors that defy predictability or fail to converge to meaningful solutions under specified conditions. 

Conversely, a score of 5 characterizes equations where solutions unequivocally exist and are uniquely determined 

for given initial or boundary conditions. Such equations reliably model systems or phenomena with consistent and 

predictable outcomes, showcasing the stability and reliability of their solutions. Assessing the existence and 

uniqueness of solutions aids in discerning the reliability and robustness of differential equations, informing 

practitioners about the predictability and coherence of the modeled systems or processes. 

Physical Interpretation: The criterion of physical interpretation illuminates the capacity of differential equations 

to translate mathematical models into tangible, understandable real-world phenomena. A score of 1 characterizes 

equations that present challenges in elucidating their connection to physical reality, often featuring abstract or 

convoluted representations that hinder direct associations with observable processes. Such equations may lack 

immediate relevance or struggle to map onto concrete physical systems, necessitating intricate interpretations or 

additional context for practical understanding. Conversely, a score of 5 indicates equations that seamlessly align 

with intuitive and lucid physical interpretations, mirroring recognizable behaviors of natural or engineered 

systems with clarity and direct correspondence. These equations elegantly depict phenomena or processes, 

facilitating straightforward connections between mathematical formulations and observable phenomena, thereby 

enhancing their applicability and usability in scientific, engineering, or practical contexts. Evaluating the physical 

interpretation criterion aids in gauging the translational efficacy of differential equations, enabling researchers and 

practitioners to grasp the real-world implications and applications of mathematical models. 
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Computational Complexity: Computational complexity serves as a crucial criterion in assessing the practical 

feasibility of implementing differential equations in computational settings. A score of 1 designates equations 

demanding substantial computational resources, intricate algorithms, or extended processing times for their 

numerical solution. These equations might involve intricate nonlinearities, high-dimensional systems, or intricate 

structures that significantly challenge computational approaches, demanding advanced techniques or 

computational power. Conversely, a score of 5 signifies equations that exhibit low computational complexity, 

allowing for efficient numerical solutions without imposing excessive computational demands. These equations 

typically feature simple, manageable structures or exhibit properties amenable to streamlined computational 

methods, facilitating rapid computations and efficient modeling. Assessing computational complexity aids in 

discerning the pragmatic viability of differential equations for computational simulations or modeling, guiding 

researchers and practitioners in selecting equations suited for efficient computational implementation in various 

scientific, engineering, or technological applications. 

Stability Analysis: Stability analysis stands as a pivotal criterion in evaluating the robustness and predictability 

of differential equation solutions. A score of 1 denotes equations yielding solutions prone to instability or intricate, 

challenging stability assessments. These equations might exhibit solutions that diverge rapidly, oscillate 

unpredictably, or necessitate sophisticated mathematical techniques for stability analysis, making predictions 

arduous or uncertain. Conversely, a score of 5 characterizes equations where solutions demonstrate stability and 

offer straightforward or easily interpretable stability analyses. Such equations often yield solutions that converge 

reliably, exhibit predictable behaviors, or allow for clear, understandable stability assessments without 

necessitating complex mathematical frameworks. Evaluating stability analysis aids in discerning the reliability 

and predictability of differential equation solutions, guiding practitioners in selecting equations suitable for 

modeling stable systems or phenomena across various scientific, engineering, or practical contexts. 

GRA method: 

The Grey Relational Analysis (GRA) method, initially formulated by Deng [17], has found wide application in 

numerous complex decision-making scenarios [24]. Rooted in grey system theory, GRA is particularly adept at 

resolving intricate relationships among multiple factors and variables [49]. Notably, various adaptations and 

modifications of the GRA method have been proposed in the existing literature [23, 25]. In our study, we introduce 

a simplified yet effective GRA approach, and methodology.  While GRA utilizes grey relational grades to assess 

the correlation between reference and alternative series. This GRA method's calculation process offers a succinct 

yet efficient way to analyze and evaluate complex decision-making scenarios [19]. 

Firstly, the decision matrix is normalized in Step 1, ensuring a consistent scale across various criteria for fair 

comparisons. Step 2 involves computing the weighted normalized decision matrix, where criteria are assigned 

relative importance through weighted considerations. Subsequently, Step 3 identifies the positive ideal and 

negative ideal solutions, establishing benchmarks for evaluating alternatives. In Step 4, grey relational coefficients 

are computed based on the weighted matrix, indicating the relationship between each alternative and the positive 

ideal solution for each criterion.  

The overall evaluation is derived in Step 5 through the calculation of the grey relational grade, representing the 

average of relational coefficients across all criteria. Step 6 involves determining the relative grey relational grade, 

offering a comparative measure of alternative performance across the overall evaluation. Finally, Step 7 involves 

ranking the alternatives in descending order based on their Ci values, ultimately selecting the alternative with the 

highest Ci as the preferred choice. This structured process aids decision-makers in systematically assessing and 

selecting alternatives based on multiple criteria, leveraging grey relational analysis to facilitate informed decision-

making. 
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3. RESULT AND DISCUSSION 

TABLE 1. Alternatives 

First-Order Linear ODE A1 

First-Order Nonlinear ODE A2 

Second-Order Linear ODE A3 

Second-Order Nonlinear ODE A4 

Heat Equation (PDE) A5 

Wave Equation (PDE) A6 

 

In the realm of differential equations and partial differential equations, a diverse spectrum of mathematical models 

captures various phenomena. First-order linear ordinary differential equations (A1) offer a foundational 

understanding of linear relationships between a function and its derivative, while first-order nonlinear ODEs (A2) 

showcase the complexities arising from nonlinear interactions between variables. Moving to higher complexity, 

second-order linear ODEs (A3) describe systems where the second derivative of a function is linked to the function 

itself and its first derivative, often seen in harmonic oscillations. Conversely, second-order nonlinear ODEs (A4) 

delve into intricate dynamics, expressing nonlinear dependencies between the function, its derivatives, and the 

independent variable. Extending beyond ODEs, the heat equation (A5) embodies diffusion phenomena, 

illustrating how heat propagates through materials over time. On a similar wavelength, the wave equation (A6) 

characterizes the propagation of waves in diverse mediums, offering insights into how disturbances evolve in 

space and time. These alternatives represent a continuum of mathematical frameworks essential in modeling and 

understanding diverse real-world phenomena across various scientific domains. 

 
TABLE 2. Evaluation Parameters 

Analytical Solvability C1 

Existence & Uniqueness C2 

Physical Interpretation C3 

Computational Complexity C4 

Stability Analysis C5 

 

Table 2 shows crucial evaluation parameters for different mathematical models and equations. Analytical 

solvability (C1) delineates the models' amenability to explicit solutions through mathematical techniques. 

Existence and uniqueness (C2) denote the conditions ensuring a well-posed problem, guaranteeing the existence 

of a solution and its uniqueness under specific constraints. Physical interpretation (C3) signifies the capacity of 

equations to represent and explain real-world phenomena, providing insight into the underlying physical 

processes. Computational complexity (C4) gauges the level of difficulty involved in numerically solving these 

equations, vital for practical applications where exact solutions might be elusive. Stability analysis (C5) pertains 

to assessing the behavior of solutions under perturbations, crucial in understanding whether small disturbances 

amplify or dampen over time, affecting the system's behavior. Each parameter plays a pivotal role in discerning 

the applicability, usability, and reliability of mathematical models across various scientific disciplines. 

 
TABLE 3. Data Set 

  C1 C2 C3 C4 C5 

A1 4 5 4 5 5 

A2 2 4 3 4 3 

A3 5 5 5 3 5 

A4 2 3 2 4 2 

A5 3 5 5 3 4 

A6 4 5 5 3 5 

 

The provided values in the matrix represent the scores assigned to six alternatives (A1 through A6) across five 

criteria (C1 to C5) in an evaluation context. Looking at the values, it's evident that there's variability in how the 
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alternatives are rated across the different criteria. For instance, A3 consistently scores high across most criteria, 

obtaining top scores (5) in C1, C2, C3, and C5, indicating strong performance or alignment with the evaluative 

considerations in these areas. On the other hand, A2 and A4 demonstrate more moderate performances across 

most criteria, with scores ranging between 2 and 4, suggesting a mixed or moderate alignment with the specified 

evaluation parameters. Meanwhile, A5 exhibits a varying profile, with different scores across criteria, showcasing 

strengths in some areas (such as C2 and C5) and potential weaknesses in others (like C1 and C4). Lastly, A1 and 

A6 consistently perform well across several criteria, obtaining higher scores (4 and 5) in most cases, indicating 

their alignment or strength in meeting the evaluation criteria, particularly in C2, C4, and C5. Overall, these 

assigned values highlight the diverse performances of the alternatives across multiple criteria, enabling a 

comparative analysis to identify strengths, weaknesses, and areas for improvement across the evaluated entities. 

 

 
FIGURE 1. Data provides ratings 

 

This Figure 1 data provides ratings (on a scale from 1 to 5) for each evaluation parameter (C1 to C5) corresponding 

to the respective mathematical models or equations (A1 to A6). These ratings can indicate the relative strengths 

or weaknesses of each model concerning the evaluation parameters. 

 
TABLE 4. Normalized Data 

  C1 C2 C3 C4 C5 

A1 0.6667 1.0000 0.6667 0.0000 0.0000 

A2 0.0000 0.5000 0.3333 0.5000 0.6667 

A3 1.0000 1.0000 1.0000 1.0000 0.0000 

A4 0.0000 0.0000 0.0000 0.5000 1.0000 

A5 0.3333 1.0000 1.0000 1.0000 0.3333 

A6 0.6667 1.0000 1.0000 1.0000 0.0000 

 

The provided matrix displays normalized scores assigned to six alternatives (A1 through A6) across five criteria 

(C1 to C5). These normalized values, ranging between 0 and 1, offer insights into the relative performance of each 

alternative across different evaluation parameters. Alternative A3 emerges as a standout performer, obtaining a 

perfect score of 1 in all criteria except C5, where it receives a score of 0. This suggests that A3 excels across most 

dimensions but might have room for improvement in C5. Conversely, A4 consistently scores lower, achieving 

zeros in C1, C2, and C3, indicating potential weaknesses in these areas. This implies that A4 may not align well 

with the corresponding evaluation criteria. A5 showcases a diverse performance profile, scoring moderately in 

C1, C3, and C5 but achieving full scores in C2 and C4. This suggests specific strengths and areas for improvement 

for A5. A1, A2, and A6 generally perform well, with varying scores across criteria. A1 and A6 receive top scores 

in C2, C4, and C5, while A2 demonstrates strength in C2 and C4. The lower scores in C1 and C3 for A2 hint at 

potential areas for enhancement. In summary, the normalized scores enable a nuanced understanding of each 

alternative's performance, facilitating a comprehensive comparison and aiding decision-makers in identifying 

strengths, weaknesses, and potential optimization opportunities across the evaluated criteria. 
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TABLE 5. Deviation sequence 

  C1 C2 C3 C4 C5 

A1 0.3333 0.0000 0.3333 1.0000 1.0000 

A2 1.0000 0.5000 0.6667 0.5000 0.3333 

A3 0.0000 0.0000 0.0000 0.0000 1.0000 

A4 1.0000 1.0000 1.0000 0.5000 0.0000 

A5 0.6667 0.0000 0.0000 0.0000 0.6667 

A6 0.3333 0.0000 0.0000 0.0000 1.0000 

 

The provided table illustrates deviation sequences for six alternatives (A1 through A6) across five criteria (C1 to 

C5). These deviation values signify the extent of divergence or difference of each alternative from an ideal or 

benchmark performance in each criterion. Alternative A3 displays a deviation sequence indicating consistently no 

deviation (0.0000) across all criteria except for C5, where it deviates fully (1.0000). This suggests that A3 closely 

adheres to the benchmark in most criteria but significantly deviates in C5. Alternatives A2 and A4 exhibit high 

deviation values (mostly 1.0000) across multiple criteria, indicating significant divergence from the benchmark 

performance. A2 particularly diverges in C1 and C5, while A4 showcases notable deviations in C1, C2, and C3. 

Alternatives A1, A5, and A6 show more varied deviation sequences. A1 demonstrates notable deviations in C4 

and C5, A5 diverges primarily in C1 and C5, while A6 showcases substantial deviation in C5. Overall, these 

deviation sequences offer insights into the extent of divergence of each alternative from an ideal or benchmark 

performance in different evaluation criteria, aiding in identifying areas of excellence or improvement across the 

evaluated dimensions. 

 
TABLE 6. Grey relation coefficient 

  C1 C2 C3 C4 C5 

A1 0.6000 1.0000 0.6000 0.3333 0.3333 

A2 0.3333 0.5000 0.4286 0.5000 0.6000 

A3 1.0000 1.0000 1.0000 1.0000 0.3333 

A4 0.3333 0.3333 0.3333 0.5000 1.0000 

A5 0.4286 1.0000 1.0000 1.0000 0.4286 

A6 0.6000 1.0000 1.0000 1.0000 0.3333 

 

The provided table presents the Grey Relation Coefficients for six alternatives (A1 through A6) across five criteria 

(C1 to C5). These coefficients reflect the degree of correlation or similarity between each alternative and an ideal 

reference within each criterion. Alternative A3 consistently obtains high coefficients of 1.0000 across all criteria 

except for C5, where it scores 0.3333. This indicates that A3 closely resembles the ideal reference in most criteria 

but displays some divergence in C5. Alternatives A1, A2, A5, and A6 exhibit varied coefficients across the criteria. 

A1 showcases strong correlations in C2 and C3, while A2 demonstrates notable correlations in C2 and C5. A5 

displays strong correlations in C2, C3, and C4, and A6 shows high correlations in C2, C3, and C4 as well. 

Alternative A4 showcases lower coefficients across most criteria, particularly in C1, C2, and C3, suggesting 

comparatively weaker correlations or similarities with the ideal reference across these dimensions. Overall, these 

coefficients provide insights into the degree of resemblance or proximity of each alternative to an ideal reference 

within each criterion, aiding in the comparative analysis and identification of alternatives with higher correlation 

to the ideal benchmark within the evaluated dimensions. 
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FIGURE 2. Grey relation coefficient 

 

The Figure 2 grey relation analysis provides a quantitative perspective on the relative merits of each mathematical 

model, aiding in the assessment and selection of models based on their performance across multiple dimensions. 

 
TABLE 7. GRG 

A1 0.5733 

A2 0.4724 

A3 0.8667 

A4 0.5000 

A5 0.7714 

A6 0.7867 

 

The GRG (Grey Relational Grade) values presented in Table 7 denote the overall performance or grade of six 

alternatives (A1 through A6) across multiple criteria, consolidating the grey relation coefficients into a single 

aggregated score for each alternative. A3 emerges as the top performer with a GRG value of 0.8667, signifying 

its high overall grade compared to other alternatives. This suggests that A3 exhibits the closest correlation or 

similarity to the ideal reference across the evaluated criteria, consolidating strong performance across multiple 

dimensions. A5 and A6 follow closely behind with GRG values of 0.7714 and 0.7867, respectively, showcasing 

robust performances across the criteria but slightly lower than A3. Alternatives A1 and A4 demonstrate 

intermediate GRG values of 0.5733 and 0.5000, indicating moderately favorable performances but falling behind 

A3, A5, and A6 in terms of overall grade. A2 obtains the lowest GRG value of 0.4724 among the alternatives, 

suggesting a comparatively weaker overall performance or correlation with the ideal benchmark across the 

evaluated criteria. Overall, these GRG values offer a consolidated assessment of the overall performance of each 

alternative, aiding in the comparative analysis and ranking of alternatives based on their aggregated performance 

across multiple dimensions. 
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FIGURE 3. GRG values 

 

The Figure 3 GRG values offer a concise representation of each model's overall performance, aiding in the 

comparative assessment and selection of models based on their aggregated performance across multiple evaluation 

dimensions. 

 
TABLE 8. Rank 

First-Order Linear ODE 4 

First-Order Nonlinear ODE 6 

Second-Order Linear ODE 1 

Second-Order Nonlinear ODE 5 

Heat Equation (PDE) 3 

Wave Equation (PDE) 2 

 

In the provided ranking of different types of differential equations (DEs), the "Second-Order Linear ODE" claims 

the top spot, implying its superior performance or alignment with the specified evaluation criteria compared to 

other listed DE types. This suggests that within the evaluated context or criteria, the Second-Order Linear ODE 

excelled the most, showcasing its strength or compatibility with the outlined benchmarks. Following closely 

behind is the "Wave Equation (PDE)" and the "Heat Equation (PDE)," securing the second and third positions, 

respectively. These equations demonstrated strong performances but slightly below the top-ranked Second-Order 

Linear ODE. Meanwhile, the "First-Order Linear ODE" occupies the fourth position, indicating a respectable but 

comparatively less impressive performance within the given criteria. The "Second-Order Nonlinear ODE" and the 

"First-Order Nonlinear ODE" secure the fifth and sixth positions, respectively, suggesting their relatively weaker 

performances compared to other DE types in the assessed context or criteria. This ranking aids in discerning the 

differential equation types based on their relative standings within the specified evaluation criteria, providing 

insights into their comparative strengths or weaknesses within the evaluated context. 
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FIGURE 4. Rank 

 

This ranking places the "Second-Order Linear ODE" at the top position, suggesting it performed the best among 

the listed types of differential equations within the evaluated criteria or context. Conversely, the "First-Order 

Nonlinear ODE" received the lowest rank, indicating relatively poorer performance compared to other types based 

on the evaluation criteria used. 

4. CONCLUSION 

In conclusion, the realm of differential equations stands as a cornerstone in diverse scientific disciplines, playing 

a pivotal role in modeling and understanding natural phenomena in physics, engineering, finance, and beyond. 

While their analytical solutions offer profound insights, the pursuit of numerical solutions has presented enduring 

challenges, particularly in higher dimensions. Finite difference methods, commonly employed for numerical 

solutions, face limitations due to the exponential increase in grid points and the necessity for smaller time step 

sizes in higher-dimensional problems. This challenge necessitates ongoing exploration and innovation in 

numerical methods to surmount the limitations of traditional approaches. Overcoming these hurdles in higher-

dimensional spaces requires the development of novel techniques capable of efficiently and accurately handling 

complex differential equations without succumbing to computational inefficiencies. The quest for robust 

numerical methods remains crucial to advance our capacity to model, simulate, and comprehend complex real-

world systems governed by differential equations. Thus, ongoing research endeavors aim to innovate numerical 

approaches that can effectively tackle the computational demands posed by higher-dimensional differential 

equations, furthering our understanding and application of these fundamental mathematical models across various 

scientific domains. 
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