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Abstract: While gradient descent optimization algorithms have gained immense popularity, they are often 

treated as mysterious black-box optimizers due to the scarcity of practical explanations about their 

strengths and weaknesses. This article endeavors to equip readers with intuitive insights into the behavior 

of various algorithms, enabling them to harness their potential. Throughout this comprehensive overview, 

we explore diverse variants of gradient descent, address challenges, introduce prominent optimization 

algorithms, delve into parallel and distributed architectures, and explore additional strategies to optimize 

gradient descent. Prepare to unravel the enigmatic realm of gradient descent and unleash its true power. 
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1. INTRODUCTION 

Among the vast array of optimization algorithms, gradient descent reigns supreme as one of the most widely 

embraced approaches, particularly in the realm of neural network optimization. Curiously, even cutting-edge Deep 

Learning libraries such as lasagne's2, caffe's3, and keras'4 include a repertoire of gradient descent optimization 

algorithm implementations. However, these algorithms often remain shrouded in mystery, used as enigmatic 

black-box optimizers, with scarce practical explanations highlighting their merits and limitations. This article 

endeavors to demystify these optimization algorithms, bestowing the reader with invaluable intuitions that shed 

light on their behavior. In Section 2, we embark on a captivating exploration of the diverse variants of gradient 

descent. Delving deeper, Section 3 succinctly encapsulates the challenges encountered during training. Building 

upon this foundation, Section 4 unveils the most prominent optimization algorithms, uncovering their intrinsic 

motivations in addressing these challenges and unveiling the derivation of their ingenious update rules. Venturing 

further into the realm of optimization, Section 5 unveils a brief yet illuminating glimpse into the fascinating 

domain of parallel and distributed architectures for optimizing gradient descent. Finally, Section 6 delves into 

additional strategies that prove instrumental in fine-tuning the performance of gradient descent. At its core, 

gradient descent emerges as an indispensable technique for minimizing an objective function J(θ), wherein the 

model's parameters θ ∈ R d serve as vital components. This is achieved by iteratively adjusting the parameters in 

the opposite direction of the gradient ∇θJ(θ) of the objective function with respect to the parameters. The learning 

rate η acts as the compass, dictating the magnitude of steps taken to traverse towards a (local) minimum. In 

essence, we follow the path guided by the slope of the objective function's terrain, descending into valleys until 

our destination is reached.5" Get ready to embark on an enthralling expedition into the inner workings of 

optimization, unraveling the enigmatic intricacies of gradient descent. 

2. GRADIENT DESCENT VARIANTS 

Unveiling the Trio: Exploring the Fascinating Variants of Gradient Descent Within the realm of gradient descent, 

we encounter three captivating variants, each distinguished by the amount of data employed to compute the 

gradient of the objective function. This trade-off between parameter update accuracy and computational efficiency 

has far-reaching implications. 

Journeying through Batch Gradient Descent: The first variant, known as batch gradient descent or vanilla gradient 

descent, embraces the entirety of the training dataset when computing the gradient of the cost function with respect 

to the parameters θ: θ = θ − η · ∇θJ(θ) (1) This approach demands the computation of gradients for the entire 
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dataset, leading to potential sluggishness and intractability when working with memory-intensive datasets. 

Additionally, batch gradient descent lacks the capability to update the model online, inhibiting real-time 

adaptation. Implementation-wise, the code for batch gradient descent manifests as follows: for i in range (nb 

epochs): paramsgrad = evaluate gradient (loss function, data, prams) prams = prams - learning rate * paramsgrad 

During a predetermined number of epochs, we calculate the gradient vector paramsgrad of the loss function for 

the entire dataset, with cutting-edge deep learning libraries offering efficient automatic differentiation. If manually 

deriving gradients, it is advisable to perform gradient checking. Parameters are subsequently updated in the 

direction of the gradients, with the learning rate determining the magnitude of the update. Batch gradient descent 

guarantees convergence to the global minimum for convex error surfaces and to a local minimum for non-convex 

surfaces. 

Embracing Stochastic Gradient Descent: In stark contrast, stochastic gradient descent (SGD) opts for a different 

approach by performing parameter updates for each training example (x(i)) and label (y(i)): θ = θ − η · ∇θJ(θ; x(i); 

y(i)) (2 Batch gradient descent incurs redundant computations when dealing with large datasets, as gradients for 

similar examples are recomputed before each parameter update. SGD eradicates this redundancy by updating 

parameters one example at a time, rendering it significantly faster and enabling online learning. However, SGD's 

frequent updates introduce high variance, causing the objective function to fluctuate intensely, as depicted in 

Figure 1. While batch gradient descent converges to the minimum of the parameter space, SGD's fluctuation grants 

it the ability to leap towards new and potentially superior local minima. Nonetheless, this very characteristic 

complicates the quest for the exact minimum, as SGD tends to overshoot. Notwithstanding, research has 

demonstrated that gradually decreasing the learning rate aligns SGD's convergence behavior with that of batch 

gradient descent, allowing it to almost certainly converge to a local or global minimum for non-convex and convex 

optimization, respectively. The code snippet below showcases the implementation of SGD, with the training data 

shuffled at each epoch, as elucidated in Section 6.1. for i in range (nb_epochs): np. random. Shuffle(data) for 

example in data: params_grad = evaluate gradient (loss function, example, prams) prams = prams – learning rate 

* params_grad Prepare to traverse the captivating landscapes of gradient descent, where these three variants offer 

unique journeys towards optimization excellence. 

 

FIGURE 1.  SGD fluctuation (Source: Wikipedia) 

Embarking on a Harmonious Journey: Mini-Batch Gradient Descent: Finally, we encounter the convergence of 

two worlds, as mini-batch gradient descent emerges to seize the best of both realms. By performing updates for 

every mini-batch consisting of n training examples, this variant exhibits the following elegant equation: θ = θ − η 

· ∇θJ(θ; x(i:i+n); y(i:i+n)) (3) This approach delivers a twofold advantage: a) it diminishes the variance of 

parameter updates, fostering more stable convergence; and b) it capitalizes on highly optimized matrix operations 

prevalent in state-of-the-art deep learning libraries, resulting in efficient computation of gradients with respect to 

a mini-batch. Mini-batch sizes commonly range between 50 and 256, although specific applications may warrant 

variations. Notably, when working with neural networks, mini-batch gradient descent typically assumes the role 

of the algorithm of choice, with the term SGD often employed even when mini-batches are utilized. Please note 

that, for the sake of simplicity, the parameters x(i:i+n) and y(i:i+n) are omitted in subsequent modifications of 

SGD throughout this discourse. In the realm of code, a transformative shift takes place. Instead of iterating over 

individual examples, we now embark on a journey through mini-batches, each comprising 50 instances: for i in 

range(nb_epochs): np. random. shuffle(data) for batch in get_ batches (data, batch_ size=50): params_grad = 

evaluate_ gradient (loss_ function, batch, prams) params = params - learning rate * params_grad Prepare to be 

captivated as mini-batch gradient descent illuminates the path towards optimization excellence, harmonizing the 

strengths of its predecessors into a formidable force. 
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3. UNVEILING THE OBSTACLES 

While vanilla mini-batch gradient descent presents itself as a promising contender, it brings forth a set of 

challenges that necessitate careful consideration:  Selecting an optimal learning rate proves to be a formidable 

task. A learning rate that is too minuscule yields agonizingly slow convergence, whereas a rate that is too 

substantial can impede convergence and cause the loss function to oscillate around the minimum or even diverge. 

Learning rate schedules [18] emerge as a potential solution, aiming to adapt the learning rate throughout training. 

Techniques such as annealing involve reducing the learning rate according to a predetermined schedule or when 

the objective change between epochs falls below a threshold. However, these fixed schedules and thresholds fail 

to adapt to the unique characteristics of each dataset [4]. Furthermore, a single learning rate governs all parameter 

updates, which may not be suitable for scenarios where data is sparse and features exhibit varying frequencies. In 

such instances, it may be beneficial to apply more substantial updates to infrequent features, rather than treating 

all features equally. One of the paramount challenges in the quest to minimize highly non-convex error functions 

prevalent in neural networks is the perils of becoming ensnared within suboptimal local minima. Surprisingly, 

Dauphin et al. [5] argue that the true difficulty lies not in local minima but rather in saddle points—points where 

one dimension ascends while another descends. These saddle points are often encircled by a plateau of comparable 

error, rendering it incredibly arduous for SGD to break free, as the gradient approaches zero across all dimensions. 

Embark on this intrepid journey as we navigate through the hurdles that arise in the realm of mini-batch gradient 

descent, uncovering ingenious solutions to overcome these challenges and forge ahead toward optimization 

excellence. 

4. UNVEILING THE ARSENAL: GRADIENT DESCENT OPTIMIZATION 

ALGORITHMS 

In the realm of Deep Learning, the community has embraced various algorithms to combat the challenges 

discussed earlier. However, we will focus solely on algorithms that are feasible to compute in practical scenarios 

for high-dimensional datasets, excluding infeasible options like second-order methods such as Newton's method 

[7]. 

The Momentum Revolution: When navigating through treacherous ravines, where the surface sharply curves in 

one dimension while remaining relatively flat in another [20], standard SGD encounters significant difficulties. It 

oscillates along the slopes of these ravines, making hesitant progress toward local optima, as depicted in Figure 

2a. 

                      

FIGURE 2. Source: Genevieve B. Orr 

Enter Momentum [17], a method that injects a dose of acceleration into SGD, mitigating oscillations and boosting 

progress in the desired direction, as illustrated in Figure 2b. Momentum achieves this by incorporating a fraction 

γ of the update vector from the previous time step into the current update vector [8]: vt = γvt−1 + η∇θJ(θ) θ = θ − 

vt (4) Typically, the momentum term γ is set to 0.9 or a similar value. In essence, when utilizing momentum, we 

unleash a rolling ball on a hill. As the ball descends, it accumulates momentum, gradually increasing its velocity 

(unless air resistance intervenes, i.e., γ < 1). A similar phenomenon occurs with our parameter updates: the 

momentum term amplifies for dimensions where gradients align and dampens updates for dimensions where 

gradients change directions. The outcome? Expedited convergence and reduced oscillation, propelling us towards 

optimization success. 

The Intelligent Ball: Nesterov Accelerated Gradient: Merely rolling down a hill without foresight leaves much to 

be desired. What if we could imbue our ball with intelligence, enabling it to anticipate and slow down before 

encountering an uphill slope? Nesterov Accelerated Gradient (NAG) [14] grants our momentum term this 

remarkable prescience. We know that we employ the momentum term, γvt−1, to propel our parameters, θ. 

Consequently, computing θ−γvt−1 approximates the forthcoming parameter position (lacking the gradient for a 

full update), offering a glimpse into our parameters' trajectory. Now, we can effectively peer into the future by 
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calculating the gradient not with respect to our current parameters, θ, but with respect to the estimated future 

position of our parameters: vt = γvt−1 + η∇θJ(θ − γvt−1) θ = θ – vt 

 

FIGURE 3. Nesterov update (Source: G. Hinton s lecture 6c) 

Once again, we assign a momentum term, γ, with a value around 0.9. While Momentum first computes the current 

gradient (small blue vector in Figure 3) and then takes a substantial leap in the direction of the updated 

accumulated gradient (big blue vector), NAG takes a daring leap towards the previous accumulated gradient's 

direction (brown vector), measures the gradient, and then adjusts its course accordingly (green vector). This 

anticipatory update prevents excessive speed and enhances responsiveness, significantly boosting the performance 

of Recurrent Neural Networks (RNNs) across various tasks [2]. With the ability to adapt our updates to the error 

function's slope and accelerate SGD, we yearn for the capability to tailor updates to individual parameters, 

allowing for larger or smaller adjustments based on their significance. 

Embracing Parameter Diversity: Adagrad: Adagrad [8] presents an algorithm for gradient-based optimization 

that tackles this very challenge: it dynamically adjusts the learning rate for each parameter, enabling more 

substantial updates for infrequent ones and smaller updates for frequent ones. Consequently, Adagrad proves 

particularly effective when handling sparse data. At Google, Dean et al. [6] discovered that Adagrad significantly 

bolstered the resilience of SGD, successfully employing it to train expansive neural networks capable of 

recognizing cats in YouTube videos [10]. Furthermore, Pennington et al. [16] harnessed Adagrad to train GloVe 

word embeddings, where infrequent words demanded more pronounced updates than their frequent counterparts. 

Previously, we performed simultaneous updates for all parameters θ, employing a uniform learning rate η for each 

parameter θi. However, Adagrad departs from this approach by assigning a distinct learning rate to every 

parameter θi at each time step t. To offer a concise illustration, let's denote gt,i as the gradient of the objective 

function with respect to parameter θi at time step t: gt,i = ∇θt J(θt,i) (6) Consequently, the SGD update for each 

parameter θi becomes: θt+1,i = θt,i − η · gt,i (7) In the update rule of Adagrad, the general learning rate η at time 

step t for parameter θi is adjusted based on the accumulated past gradients computed for θi: θt+1,i = θt,i − η √ 

Gt,ii +  · gt,i (8) Here, Gt ∈ Rd×d represents a diagonal matrix where each diagonal element Gt,ii is the sum of 

the squares of the gradients with respect to θi up to time step t. Additionally,  is a smoothing term that prevents 

division by zero (typically on the order of 1e−8). Intriguingly, omitting the square root operation severely 

compromises the algorithm's performance. By conducting an element-wise matrix-vector multiplication between 

Gt and gt, we can now leverage vectorization to streamline our implementation: θt+1 = θt − η √ Gt +  gt (9) One 

of the primary advantages of A degrade is its ability to eliminate the manual tuning of the learning rate. Most 

implementations utilize a default value of 0.01 and maintain it throughout the process. Nevertheless, A degrade 

does have a drawback: the accumulation of squared gradients in the denominator. As each added term is positive, 

the cumulative sum grows incessantly during training. Consequently, the learning rate diminishes to infinitesimal 

levels, rendering the algorithm incapable of acquiring further knowledge. The subsequent algorithms aim to 

address this limitation. 

Redefining the Learning Rate: Ad delta: Adadelta [22] emerges as an extension of Adagrad, aiming to mitigate 

its aggressive and monotonically decreasing learning rate. Unlike Adagrad, which accumulates all past squared 

gradients, Adadelta limits the accumulation window to a fixed size, denoted as w. Instead of storing w previous 

squared gradients, Adadelta employs a decaying average of all past squared gradients as the sum of gradients. The 

running average E[g^2]t at time step t is computed as a fraction γ of the previous average combined with (1 - γ) 

times the current gradient squared:E[g^2]t = γE[g^2]t−1 + (1 − γ)g^2t Here, γ assumes a value similar to the 

momentum term, typically around 0.9. To enhance clarity, let's redefine our vanilla SGD update in terms of the 

parameter update vector ∆θt: ∆θt = −η · gt,i θt+1 = θt + ∆θt The parameter update vector derived for Adagrad can 

now be expressed as: ∆θt = − η √ Gt +  gt To align with Adadelta, we replace the diagonal matrix Gt with the 

decaying average of past squared gradients E[g^2]t: ∆θt = − η p E[g^2]t +  gt As the denominator corresponds to 

the root mean squared (RMS) error criterion of the gradient, we can utilize a shorthand for the criterion: ∆θt = − 

η RMS[g]t gt The authors highlight that the units in this update, as well as in SGD, Momentum, or Adagrad, do 

not align with the parameter units. To address this, they introduce another exponentially decaying average, not of 

squared gradients, but of squared parameter updates: E[∆θ^2]t = γE[∆θ^2]t−1 + (1 − γ)∆θ^2t Consequently, the 

root mean squared error of parameter updates becomes: RMS[∆θ]t = p E[∆θ^2]t +  As the value of RMS[∆θ]t is 
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unknown, we approximate it with the RMS of parameter updates until the previous time step. By replacing the 

learning rate η in the previous update rule with RMS[∆θ]t−1, we arrive at the Adadelta update rule: ∆θt = − 

RMS[∆θ]t−1 RMS[g]t gt θt+1 = θt + ∆θt  Adadelta eliminates the need for a default learning rate, as it has been 

seamlessly integrated into the update rule. 

Unveiling an Adaptive Learning Approach: RM Sprop: RMSprop, an adaptive learning rate technique, was 

introduced by Geoff Hinton during Lecture 6e of his Coursera Class12. It emerged independently around the same 

time as Adadelta, both aiming to address the diminishing learning rates experienced in Adagrad. Remarkably, 

RMSprop's first update vector is identical to the one derived for Adadelta: E[g^2]t = 0.9E[g^2]t−1 + 0.1g^2t θt+1 

= θt − η p E[g^2]t +  gt Similar to Adadelta, RMSprop also divides the learning rate by an exponentially decaying 

average of squared gradients. Hinton suggests setting γ to 0.9, while a recommended default value for the learning 

rate η is 0.001. 

Unleashing the Power of Adaptive Moment Estimation: Adam, short for Adaptive Moment Estimation, is a 

remarkable technique [10] that computes adaptive learning rates for individual parameters. It goes beyond the 

capabilities of Adadelta and RMSprop by incorporating both an exponentially decaying average of past squared 

gradients (vt) and an exponentially decaying average of past gradients (mt), similar to momentum: mt = β1mt−1 

+ (1 − β1)gt vt = β2vt−1 + (1 − β2)g^2t (19) The parameters mt and vt represent estimations of the first moment 

(mean) and second moment (uncentered variance) of the gradients, respectively, hence the name of the method. 

Since mt and vt are initialized as vectors of zeros, the authors of Adam acknowledge that they tend to be biased 

towards zero, particularly during the initial time steps and when the decay rates (β1 and β2) are small. To address 

these biases, bias-corrected estimates of the first and second moments are computed: m̂t = mt / (1 − β^t1) v̂t = vt 

/ (1 − β^t2) (20) These bias-corrected estimates are then utilized to update the parameters, following a similar 

approach as Ad delta and RM Sprop. This leads to the Adam update rule: θt+1 = θt − η / √(v̂t + ε) · m̂t (21) The 

authors propose default values of 0.9 for β1, 0.999 for β2, and 10^(-8) for ε. Empirical evidence demonstrates the 

effectiveness of Adam in practical scenarios, showcasing its superiority compared to other adaptive learning-

method algorithms. 

Breaking Boundaries with Ada Max: In the pursuit of further optimization, the Adam update rule introduced a 

factor, vt, which scaled the gradient in relation to the 2 norm of past gradients (via the vt−1 term) and the current 

gradient's 2 norm, |gt|^2: vt = β2vt−1 + (1 − β2)|gt|^2 (22) To extend this update to the p norm, denoted by βp^2, 

we can introduce a generalization. However, norms with large p values often suffer from numerical instability, 

making 1 and 2 norms more prevalent in practical applications. Interestingly, ∞ norm exhibits remarkable stability. 

Thus, Ada Max [10] was proposed, demonstrating convergence of vt with `∞ norm to a more stable value. To 

differentiate from Adam, the authors employ the variable ut, which represents the infinity norm-constrained vt: ut 

= β∞^2vt−1 + (1 − β∞^2)|gt|∞ = max(β2 · vt−1, |gt|) (24)By incorporating this into the Adam update equation and 

replacing √v̂t + ε with ut, we unveil the Ada Max update rule: θt+1 = θt − η / ut · m̂t (25) Notably, as ut utilizes 

the max operation, it avoids the bias towards zero observed in mt and vt of Adam. Consequently, a bias correction 

for ut is unnecessary. For optimal results, recommended default values are η = 0.002, β1 = 0.9, and β2 = 0.999. 

Ada Max dares to transcend conventional boundaries and unlocks a new realm of optimization possibilities. 

Embracing Momentum's Evolution: Nadam As we have previously explored, Adam is a fusion of RMSprop and 

momentum, where RMSprop contributes the exponentially decaying average of past squared gradients, vt, and 

momentum factors in the exponentially decaying average of past gradients, mt. Moreover, we discovered that 

Nesterov accelerated gradient (NAG) surpasses the effectiveness of vanilla momentum. In a quest to combine the 

strengths of Adam and NAG, Nadam (Nesterov-accelerated Adaptive Moment Estimation) [7] was conceived. To 

incorporate NAG into Adam, a modification of its momentum term, mt, is required. Let us recall the momentum 

update rule using our current notation: gt = ∇θt J(θt)  mt = γmt−1 + ηgt  θt+1 = θt − mt  This equation once again 

highlights that momentum involves taking a step in the direction of the previous momentum vector and another 

step in the direction of the current gradient. NAG allows for a more accurate gradient step by updating the 

parameters with the momentum step before computing the gradient. By modifying the gradient gt, we arrive at 

NAG: gt = ∇θt J(θt − γmt−1)  mt = γmt−1 + ηgt  θt+1 = θt − mt  Dozat proposes a modification to NAG as follows: 

Rather than applying the momentum step twice, once to update the gradient gt and a second time to update the 

parameters θt+1, we now directly apply the look-ahead momentum vector to update the current parameters: gt = 

∇θt J(θt)  mt = γmt−1 + ηgt  θt+1 = θt − (γmt + ηgt)  Notice that instead of using the previous momentum vector 

mt−1 as in Equation 27, we employ the current momentum vector mt for looking ahead. To incorporate Nesterov 

momentum into Adam, we can similarly replace the previous momentum vector with the current momentum 

vector. Let's revisit the Adam update rule (note that we do not need to modify v̂t): mt = β1mt−1 + (1 − β1)gt  m̂t 

= mt 1 − β t 1 θt+1 = θt − η √ v̂t +  m̂t Expanding the second equation using the definitions of m̂t and mt, we 

obtain: θt+1 = θt − η √ v̂t +  ( β1mt−1 1 − β t 1 (1 − β1)gt 1 − β t 1 ) (31) Notably, β1mt−1 1−β t 1 represents the 
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bias-corrected estimate of the momentum vector from the previous time step. Consequently, we can replace it 

with m̂t−1: θt+1 = θt − η √ v̂t + (β1m̂t−1 + (1 − β1)gt 1 − β t 1 ) (32) This equation bears a striking resemblance 

to our expanded momentum term in Equation 27. By incorporating Nesterov momentum as we did in Equation 

29, we simply replace the bias-corrected estimate of the momentum vector from the previous time step. 

Illuminating Algorithmic Behaviors: In these captivating visuals (Figure 4a and Figure 4b), we gain valuable 

intuitions into the optimization behaviors exhibited by the presented optimization algorithms [13]. 

 

FIGURE 4. Source and full animations: Alec Radford 

Figure 4a unveils the paths traversed by these algorithms on the contours of a loss surface, specifically the Beale 

function. Originating from the same starting point, they embark on distinct trajectories towards the minimum. 

Notably, degrade, Adadelta, and RMSprop promptly set off in the right direction, converging with similar 

swiftness. Meanwhile, Momentum and NAG encounter detours, akin to a ball rolling off course down a hill. 

Nevertheless, NAG swiftly corrects its path, leveraging its enhanced responsiveness by looking ahead, ultimately 

steering towards the minimum. Turning our attention to Figure 4b, we explore the algorithms' behavior when 

confronted with a saddle point—a point where one dimension exhibits a positive slope while the other dimension 

displays a negative slope—posing a challenge for SGD, as mentioned earlier. Here we observe that SGD, 

Momentum, and NAG grapple with breaking symmetry, although the latter two eventually triumph in escaping 

the saddle point. On the other hand, ad grad, RMSprop, and ad delta promptly descend down the negative slope, 

with Adadelta leading the charge. It becomes evident that adaptive learning-rate methods, namely Ad grad, Ad 

delta, RM Sprop, and Adam, prove most adept in such scenarios, showcasing superior convergence capabilities. 

These captivating visualizations provide compelling evidence that adaptive learning-rate methods offer optimal 

convergence and effectively navigate complex optimization landscapes. Deciding on the Optimal Optimizer: A 

Wise Choice: Now, the question arises: Which optimizer should you employ? Consider the nature of your input 

data. If it leans towards sparsity, then it is highly likely that you will achieve optimal results by employing one of 

the adaptive learning-rate methods. An additional advantage lies in the fact that you won't need to fine-tune the 

learning rate, as the default value often yields excellent outcomes. To summarize, RMSprop emerges as an 

extension of Adagrad, addressing its issue of rapidly diminishing learning rates. Adadelta shares similarities with 

RM Sprop, but instead of using the root mean square (RMS) of parameter updates in its numerator update rule, it 

utilizes the RMS of gradients. Finally, Adam incorporates bias-correction and momentum into the framework of 

RMSprop. Thus far, RM Sprop, Adadelta, and Adam showcase comparable performance in similar scenarios. 

Kingma et al. [10] shed light on Adam's slight advantage over RMSprop, particularly in later stages of 

optimization when gradients become sparser, thanks to its bias-correction mechanism. Consequently, Adam could 

potentially be the optimal choice overall. Interestingly, recent studies reveal a preference for vanilla SGD 

(Stochastic Gradient Descent) without momentum and a straightforward learning rate annealing schedule. While 

SGD often manages to find a minimum, it may require significantly more time compared to some of the other 

optimizers. It heavily relies on a robust initialization and annealing schedule and may encounter challenges in 

escaping saddle points instead of local minima. Hence, if your priority lies in fast convergence and you are training 

a deep or complex neural network, selecting one of the adaptive learning rate methods would be wise. The key to 

making an informed decision lies in understanding your data's characteristics and aligning them with the strengths 

and capabilities of the various optimization algorithms at your disposal 

5. REIMAGINING PARALLELIZATION AND DISTRIBUTION OF SGD: 

ADVANCEMENTS UNVEILED 
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Considering the widespread adoption of large-scale data solutions and the accessibility of low-cost clusters, it is 

evident that distributing SGD to further expedite its progress is a logical choice. SGD, in its inherent form, operates 

sequentially—step by step, inching closer to the minimum. While it delivers satisfactory convergence, it can prove 

sluggish, especially when dealing with vast datasets. In contrast, asynchronous execution of SGD accelerates the 

process but often suffers from suboptimal communication between workers, resulting in compromised 

convergence. Additionally, we can also parallelize SGD on a single machine without necessitating a massive 

computing cluster. In this section, we explore the algorithms and architectures proposed to optimize the 

parallelized and distributed versions of SGD. Introducing Hogwild!: In their work, Niu et al. [15] introduce a 

parallel update scheme called Hogwild!, enabling simultaneous SGD updates on CPUs. The scheme allows 

processors to access shared memory without the need for parameter locking. This approach is effective for sparse 

input data, where each update affects only a fraction of the parameters. The authors demonstrate that Hogwild! 

achieves near-optimal convergence rates in such cases, as the likelihood of processors overwriting vital 

information is minimal. Unveiling Downpour SGD: Downpour SGD, an asynchronous variant of SGD, was 

employed by Dean et al. [6] in their Dist Belief framework (predecessor to Tensor Flow) at Google. It involves 

running multiple replicas of a model in parallel, each processing a subset of the training data. These replicas 

communicate their updates to a parameter server, distributed across multiple machines. Each machine is 

responsible for storing and updating a fraction of the model's parameters. However, since the replicas do not 

engage in direct communication or share weights and updates, their parameters are constantly at risk of diverging, 

impeding convergence. Delay-Tolerant Algorithms for SGD: McMahan and Streeter [12] extend Ada Grad to the 

parallel setting by introducing delay-tolerant algorithms that adapt not only to past gradients but also to the delays 

in updates. This approach has proven to be effective in practical scenarios. The Power of Tensor Flow: Tensor 

Flow [1], Google's recently open-sourced framework for implementing and deploying large-scale machine 

learning models, builds upon their experience with Dist Belief. It is already extensively employed internally for 

computations on a diverse array of mobile devices and large-scale distributed systems. The distributed version, 

released in April 2016, leverages a computation graph split into subgraphs for each device, with communication 

facilitated through Send/Receive node pairs. Elastic Averaging SGD: In the pursuit of innovation, Zhang et al. 

[23] propose Elastic Averaging SGD (EASGD), which connects the parameters of asynchronous SGD workers 

with an elastic force represented by a center variable stored in the parameter server. This design enables local 

variables to deviate further from the center variable, fostering enhanced exploration of the parameter space. 

Empirical evidence demonstrates that this heightened exploration capacity leads to improved performance by 

uncovering new local optima. These advancements in parallelization and distribution of SGD showcase the 

ongoing efforts to optimize its performance, enabling faster convergence and wider applicability in diverse 

computing environments. 

6. UNVEILING ADDITIONAL STRATEGIES FOR ENHANCING SGD 

PERFORMANCE 

In this section, we explore supplementary strategies that can be employed in conjunction with the aforementioned 

algorithms to further optimize the performance of SGD. For a comprehensive overview of additional effective 

techniques, we recommend referring to [11]. Shuffling and Curriculum Learning: Typically, it is desirable to 

present training examples to the model in a randomized order to prevent optimization algorithm bias. 

Consequently, shuffling the training data after each epoch is often a prudent choice. However, in certain scenarios 

where the objective is to tackle progressively challenging problems, presenting the examples in a meaningful 

order can actually improve performance and convergence. This approach, known as Curriculum Learning [3], 

establishes a structured order for the examples. Zaremba and Sutskever [21] successfully employed a combined 

or mixed strategy in training LSTMs for evaluating simple programs, outperforming the naive approach that sorts 

examples solely based on increasing difficulty. Harnessing the Power of Batch Normalization: To facilitate 

effective learning, it is customary to normalize the initial parameter values by initializing them with zero mean 

and unit variance. However, as training progresses and parameter updates vary, this normalization is lost, leading 

to slower training and amplified changes as the network deepens. Batch normalization [9] restores these 

normalizations for each mini-batch and enables backpropagation of changes through the operation. By 

incorporating normalization into the model architecture, higher learning rates can be utilized, and less emphasis 

needs to be placed on initialization parameters. Additionally, batch normalization serves as a regularize, reducing 

or even eliminating the need for Dropout. Employing Early Stopping: As emphasized by Geoff Hinton, early 

stopping represents a "beautiful free lunch" [16]. It is crucial to continuously monitor the error on a validation set 

during training and exercise patience when observing insufficient improvement in validation error. Stopping the 

training process at an appropriate stage can prevent unnecessary computations and resource consumption. 

Embracing Gradient Noise: Neelakantan et al. [13] introduce the concept of adding noise following a Gaussian 

distribution N(0, σ^2_t) to each gradient update. This is expressed by the equation: gt,i = gt,i + N(0, σ^2_t) (34) 
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The variance is annealed according to the following schedule: σ^2_t = η / (1 + t)^γ (35) The inclusion of such 

noise enhances the robustness of networks against poor initialization and proves particularly beneficial for training 

deep and complex networks. It is postulated that the introduced noise provides the model with additional 

opportunities to escape and discover new local minima, which are more prevalent in deeper models. These 

additional strategies expand the repertoire of techniques available to optimize SGD, enabling practitioners to 

further enhance its performance in various settings. 

7. CONCLUSION: UNVEILING THE POWER OF OPTIMIZING SGD 

In this comprehensive article, we embarked on a journey through the realm of stochastic gradient descent (SGD), 

exploring its three variants. Among them, mini-batch gradient descent emerged as the favored choice within the 

machine learning community. Delving deeper into the optimization of SGD, we examined a plethora of algorithms 

that are widely employed to maximize its potential. From the stalwart Momentum and Nesterov accelerated 

gradient to the adaptive marvels of Adagrad, Adadelta, RM Sprop, Adam, Ada Max, and Nadam, we covered the 

spectrum of optimization techniques. Furthermore, we explored various algorithms tailored specifically for 

asynchronous SGD, enabling parallelization and distribution of computations. To elevate the performance of SGD 

even further, we ventured into additional strategies that prove invaluable. We unraveled the benefits of shuffling 

and curriculum learning, where intelligently ordering training examples can enhance performance and 

convergence. The transformative power of batch normalization, a technique that restores parameter normalizations 

during training, was unveiled. Additionally, we highlighted the importance of early stopping, a valuable approach 

for monitoring and halting training when validation error fails to improve sufficiently. By assimilating these 

diverse strategies, ranging from algorithmic choices to auxiliary techniques, practitioners can unlock the full 

potential of SGD, revolutionizing the optimization landscape for a broad array of applications. In summary, this 

article serves as a comprehensive guide, equipping readers with an arsenal of tools and knowledge to unleash the 

true power of SGD optimization. 
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