

Vishal.et.al / REST Journal on Banking, Accounting and Business 2(2), June 2023: 56-63

Copyright@ REST Publisher 56

REST Journal on Banking, Accounting and Business

Vol: 2(2), June 2023

REST Publisher; ISSN: 2583 4746 (Online)

Website: http://restpublisher.com/book-series/jbab/

DOI: https://doi.org/10.46632/jbab/2/2/7

Unleashing the Power of Gradient Descent: Dive into the

World of Optimization Algorithms
Vishal Triloknath Jaiswar

S.S.T College of Arts and Commerce, Mumbai, Maharashtra, India.

Corresponding Author Email: vishal.mit21009@sstcollge.edu.in

Abstract: While gradient descent optimization algorithms have gained immense popularity, they are often

treated as mysterious black-box optimizers due to the scarcity of practical explanations about their

strengths and weaknesses. This article endeavors to equip readers with intuitive insights into the behavior

of various algorithms, enabling them to harness their potential. Throughout this comprehensive overview,

we explore diverse variants of gradient descent, address challenges, introduce prominent optimization

algorithms, delve into parallel and distributed architectures, and explore additional strategies to optimize

gradient descent. Prepare to unravel the enigmatic realm of gradient descent and unleash its true power.

Keywords: Gradient descent Variants, Unveiling the Obstacles, Unveiling the Arsenal.

1. INTRODUCTION

Among the vast array of optimization algorithms, gradient descent reigns supreme as one of the most widely

embraced approaches, particularly in the realm of neural network optimization. Curiously, even cutting-edge Deep

Learning libraries such as lasagne's2, caffe's3, and keras'4 include a repertoire of gradient descent optimization

algorithm implementations. However, these algorithms often remain shrouded in mystery, used as enigmatic

black-box optimizers, with scarce practical explanations highlighting their merits and limitations. This article

endeavors to demystify these optimization algorithms, bestowing the reader with invaluable intuitions that shed

light on their behavior. In Section 2, we embark on a captivating exploration of the diverse variants of gradient

descent. Delving deeper, Section 3 succinctly encapsulates the challenges encountered during training. Building

upon this foundation, Section 4 unveils the most prominent optimization algorithms, uncovering their intrinsic

motivations in addressing these challenges and unveiling the derivation of their ingenious update rules. Venturing

further into the realm of optimization, Section 5 unveils a brief yet illuminating glimpse into the fascinating

domain of parallel and distributed architectures for optimizing gradient descent. Finally, Section 6 delves into

additional strategies that prove instrumental in fine-tuning the performance of gradient descent. At its core,

gradient descent emerges as an indispensable technique for minimizing an objective function J(θ), wherein the

model's parameters θ ∈ R d serve as vital components. This is achieved by iteratively adjusting the parameters in

the opposite direction of the gradient ∇θJ(θ) of the objective function with respect to the parameters. The learning

rate η acts as the compass, dictating the magnitude of steps taken to traverse towards a (local) minimum. In

essence, we follow the path guided by the slope of the objective function's terrain, descending into valleys until

our destination is reached.5" Get ready to embark on an enthralling expedition into the inner workings of

optimization, unraveling the enigmatic intricacies of gradient descent.

2. GRADIENT DESCENT VARIANTS

Unveiling the Trio: Exploring the Fascinating Variants of Gradient Descent Within the realm of gradient descent,

we encounter three captivating variants, each distinguished by the amount of data employed to compute the

gradient of the objective function. This trade-off between parameter update accuracy and computational efficiency

has far-reaching implications.

Journeying through Batch Gradient Descent: The first variant, known as batch gradient descent or vanilla gradient

descent, embraces the entirety of the training dataset when computing the gradient of the cost function with respect

to the parameters θ: θ = θ − η · ∇θJ(θ) (1) This approach demands the computation of gradients for the entire

mailto:vishal.mit21009@sstcollge.edu.in

Vishal.et.al / REST Journal on Banking, Accounting and Business 2(2), June 2023: 56-63

Copyright@ REST Publisher 57

dataset, leading to potential sluggishness and intractability when working with memory-intensive datasets.

Additionally, batch gradient descent lacks the capability to update the model online, inhibiting real-time

adaptation. Implementation-wise, the code for batch gradient descent manifests as follows: for i in range (nb

epochs): paramsgrad = evaluate gradient (loss function, data, prams) prams = prams - learning rate * paramsgrad

During a predetermined number of epochs, we calculate the gradient vector paramsgrad of the loss function for

the entire dataset, with cutting-edge deep learning libraries offering efficient automatic differentiation. If manually

deriving gradients, it is advisable to perform gradient checking. Parameters are subsequently updated in the

direction of the gradients, with the learning rate determining the magnitude of the update. Batch gradient descent

guarantees convergence to the global minimum for convex error surfaces and to a local minimum for non-convex

surfaces.

Embracing Stochastic Gradient Descent: In stark contrast, stochastic gradient descent (SGD) opts for a different

approach by performing parameter updates for each training example (x(i)) and label (y(i)): θ = θ − η · ∇θJ(θ; x(i);

y(i)) (2 Batch gradient descent incurs redundant computations when dealing with large datasets, as gradients for

similar examples are recomputed before each parameter update. SGD eradicates this redundancy by updating

parameters one example at a time, rendering it significantly faster and enabling online learning. However, SGD's

frequent updates introduce high variance, causing the objective function to fluctuate intensely, as depicted in

Figure 1. While batch gradient descent converges to the minimum of the parameter space, SGD's fluctuation grants

it the ability to leap towards new and potentially superior local minima. Nonetheless, this very characteristic

complicates the quest for the exact minimum, as SGD tends to overshoot. Notwithstanding, research has

demonstrated that gradually decreasing the learning rate aligns SGD's convergence behavior with that of batch

gradient descent, allowing it to almost certainly converge to a local or global minimum for non-convex and convex

optimization, respectively. The code snippet below showcases the implementation of SGD, with the training data

shuffled at each epoch, as elucidated in Section 6.1. for i in range (nb_epochs): np. random. Shuffle(data) for

example in data: params_grad = evaluate gradient (loss function, example, prams) prams = prams – learning rate

* params_grad Prepare to traverse the captivating landscapes of gradient descent, where these three variants offer

unique journeys towards optimization excellence.

FIGURE 1. SGD fluctuation (Source: Wikipedia)

Embarking on a Harmonious Journey: Mini-Batch Gradient Descent: Finally, we encounter the convergence of

two worlds, as mini-batch gradient descent emerges to seize the best of both realms. By performing updates for

every mini-batch consisting of n training examples, this variant exhibits the following elegant equation: θ = θ − η

· ∇θJ(θ; x(i:i+n); y(i:i+n)) (3) This approach delivers a twofold advantage: a) it diminishes the variance of

parameter updates, fostering more stable convergence; and b) it capitalizes on highly optimized matrix operations

prevalent in state-of-the-art deep learning libraries, resulting in efficient computation of gradients with respect to

a mini-batch. Mini-batch sizes commonly range between 50 and 256, although specific applications may warrant

variations. Notably, when working with neural networks, mini-batch gradient descent typically assumes the role

of the algorithm of choice, with the term SGD often employed even when mini-batches are utilized. Please note

that, for the sake of simplicity, the parameters x(i:i+n) and y(i:i+n) are omitted in subsequent modifications of

SGD throughout this discourse. In the realm of code, a transformative shift takes place. Instead of iterating over

individual examples, we now embark on a journey through mini-batches, each comprising 50 instances: for i in

range(nb_epochs): np. random. shuffle(data) for batch in get_ batches (data, batch_ size=50): params_grad =

evaluate_ gradient (loss_ function, batch, prams) params = params - learning rate * params_grad Prepare to be

captivated as mini-batch gradient descent illuminates the path towards optimization excellence, harmonizing the

strengths of its predecessors into a formidable force.

Vishal.et.al / REST Journal on Banking, Accounting and Business 2(2), June 2023: 56-63

Copyright@ REST Publisher 58

3. UNVEILING THE OBSTACLES

While vanilla mini-batch gradient descent presents itself as a promising contender, it brings forth a set of

challenges that necessitate careful consideration: Selecting an optimal learning rate proves to be a formidable

task. A learning rate that is too minuscule yields agonizingly slow convergence, whereas a rate that is too

substantial can impede convergence and cause the loss function to oscillate around the minimum or even diverge.

Learning rate schedules [18] emerge as a potential solution, aiming to adapt the learning rate throughout training.

Techniques such as annealing involve reducing the learning rate according to a predetermined schedule or when

the objective change between epochs falls below a threshold. However, these fixed schedules and thresholds fail

to adapt to the unique characteristics of each dataset [4]. Furthermore, a single learning rate governs all parameter

updates, which may not be suitable for scenarios where data is sparse and features exhibit varying frequencies. In

such instances, it may be beneficial to apply more substantial updates to infrequent features, rather than treating

all features equally. One of the paramount challenges in the quest to minimize highly non-convex error functions

prevalent in neural networks is the perils of becoming ensnared within suboptimal local minima. Surprisingly,

Dauphin et al. [5] argue that the true difficulty lies not in local minima but rather in saddle points—points where

one dimension ascends while another descends. These saddle points are often encircled by a plateau of comparable

error, rendering it incredibly arduous for SGD to break free, as the gradient approaches zero across all dimensions.

Embark on this intrepid journey as we navigate through the hurdles that arise in the realm of mini-batch gradient

descent, uncovering ingenious solutions to overcome these challenges and forge ahead toward optimization

excellence.

4. UNVEILING THE ARSENAL: GRADIENT DESCENT OPTIMIZATION

ALGORITHMS

In the realm of Deep Learning, the community has embraced various algorithms to combat the challenges

discussed earlier. However, we will focus solely on algorithms that are feasible to compute in practical scenarios

for high-dimensional datasets, excluding infeasible options like second-order methods such as Newton's method

[7].

The Momentum Revolution: When navigating through treacherous ravines, where the surface sharply curves in

one dimension while remaining relatively flat in another [20], standard SGD encounters significant difficulties. It

oscillates along the slopes of these ravines, making hesitant progress toward local optima, as depicted in Figure

2a.

FIGURE 2. Source: Genevieve B. Orr

Enter Momentum [17], a method that injects a dose of acceleration into SGD, mitigating oscillations and boosting

progress in the desired direction, as illustrated in Figure 2b. Momentum achieves this by incorporating a fraction

γ of the update vector from the previous time step into the current update vector [8]: vt = γvt−1 + η∇θJ(θ) θ = θ −

vt (4) Typically, the momentum term γ is set to 0.9 or a similar value. In essence, when utilizing momentum, we

unleash a rolling ball on a hill. As the ball descends, it accumulates momentum, gradually increasing its velocity

(unless air resistance intervenes, i.e., γ < 1). A similar phenomenon occurs with our parameter updates: the

momentum term amplifies for dimensions where gradients align and dampens updates for dimensions where

gradients change directions. The outcome? Expedited convergence and reduced oscillation, propelling us towards

optimization success.

The Intelligent Ball: Nesterov Accelerated Gradient: Merely rolling down a hill without foresight leaves much to

be desired. What if we could imbue our ball with intelligence, enabling it to anticipate and slow down before

encountering an uphill slope? Nesterov Accelerated Gradient (NAG) [14] grants our momentum term this

remarkable prescience. We know that we employ the momentum term, γvt−1, to propel our parameters, θ.

Consequently, computing θ−γvt−1 approximates the forthcoming parameter position (lacking the gradient for a

full update), offering a glimpse into our parameters' trajectory. Now, we can effectively peer into the future by

Vishal.et.al / REST Journal on Banking, Accounting and Business 2(2), June 2023: 56-63

Copyright@ REST Publisher 59

calculating the gradient not with respect to our current parameters, θ, but with respect to the estimated future

position of our parameters: vt = γvt−1 + η∇θJ(θ − γvt−1) θ = θ – vt

FIGURE 3. Nesterov update (Source: G. Hinton s lecture 6c)

Once again, we assign a momentum term, γ, with a value around 0.9. While Momentum first computes the current

gradient (small blue vector in Figure 3) and then takes a substantial leap in the direction of the updated

accumulated gradient (big blue vector), NAG takes a daring leap towards the previous accumulated gradient's

direction (brown vector), measures the gradient, and then adjusts its course accordingly (green vector). This

anticipatory update prevents excessive speed and enhances responsiveness, significantly boosting the performance

of Recurrent Neural Networks (RNNs) across various tasks [2]. With the ability to adapt our updates to the error

function's slope and accelerate SGD, we yearn for the capability to tailor updates to individual parameters,

allowing for larger or smaller adjustments based on their significance.

Embracing Parameter Diversity: Adagrad: Adagrad [8] presents an algorithm for gradient-based optimization

that tackles this very challenge: it dynamically adjusts the learning rate for each parameter, enabling more

substantial updates for infrequent ones and smaller updates for frequent ones. Consequently, Adagrad proves

particularly effective when handling sparse data. At Google, Dean et al. [6] discovered that Adagrad significantly

bolstered the resilience of SGD, successfully employing it to train expansive neural networks capable of

recognizing cats in YouTube videos [10]. Furthermore, Pennington et al. [16] harnessed Adagrad to train GloVe

word embeddings, where infrequent words demanded more pronounced updates than their frequent counterparts.

Previously, we performed simultaneous updates for all parameters θ, employing a uniform learning rate η for each

parameter θi. However, Adagrad departs from this approach by assigning a distinct learning rate to every

parameter θi at each time step t. To offer a concise illustration, let's denote gt,i as the gradient of the objective

function with respect to parameter θi at time step t: gt,i = ∇θt J(θt,i) (6) Consequently, the SGD update for each

parameter θi becomes: θt+1,i = θt,i − η · gt,i (7) In the update rule of Adagrad, the general learning rate η at time

step t for parameter θi is adjusted based on the accumulated past gradients computed for θi: θt+1,i = θt,i − η √

Gt,ii + · gt,i (8) Here, Gt ∈ Rd×d represents a diagonal matrix where each diagonal element Gt,ii is the sum of

the squares of the gradients with respect to θi up to time step t. Additionally, is a smoothing term that prevents

division by zero (typically on the order of 1e−8). Intriguingly, omitting the square root operation severely

compromises the algorithm's performance. By conducting an element-wise matrix-vector multiplication between

Gt and gt, we can now leverage vectorization to streamline our implementation: θt+1 = θt − η √ Gt + gt (9) One

of the primary advantages of A degrade is its ability to eliminate the manual tuning of the learning rate. Most

implementations utilize a default value of 0.01 and maintain it throughout the process. Nevertheless, A degrade

does have a drawback: the accumulation of squared gradients in the denominator. As each added term is positive,

the cumulative sum grows incessantly during training. Consequently, the learning rate diminishes to infinitesimal

levels, rendering the algorithm incapable of acquiring further knowledge. The subsequent algorithms aim to

address this limitation.

Redefining the Learning Rate: Ad delta: Adadelta [22] emerges as an extension of Adagrad, aiming to mitigate

its aggressive and monotonically decreasing learning rate. Unlike Adagrad, which accumulates all past squared

gradients, Adadelta limits the accumulation window to a fixed size, denoted as w. Instead of storing w previous

squared gradients, Adadelta employs a decaying average of all past squared gradients as the sum of gradients. The

running average E[g^2]t at time step t is computed as a fraction γ of the previous average combined with (1 - γ)

times the current gradient squared:E[g^2]t = γE[g^2]t−1 + (1 − γ)g^2t Here, γ assumes a value similar to the

momentum term, typically around 0.9. To enhance clarity, let's redefine our vanilla SGD update in terms of the

parameter update vector ∆θt: ∆θt = −η · gt,i θt+1 = θt + ∆θt The parameter update vector derived for Adagrad can

now be expressed as: ∆θt = − η √ Gt + gt To align with Adadelta, we replace the diagonal matrix Gt with the

decaying average of past squared gradients E[g^2]t: ∆θt = − η p E[g^2]t + gt As the denominator corresponds to

the root mean squared (RMS) error criterion of the gradient, we can utilize a shorthand for the criterion: ∆θt = −

η RMS[g]t gt The authors highlight that the units in this update, as well as in SGD, Momentum, or Adagrad, do

not align with the parameter units. To address this, they introduce another exponentially decaying average, not of

squared gradients, but of squared parameter updates: E[∆θ^2]t = γE[∆θ^2]t−1 + (1 − γ)∆θ^2t Consequently, the

root mean squared error of parameter updates becomes: RMS[∆θ]t = p E[∆θ^2]t + As the value of RMS[∆θ]t is

Vishal.et.al / REST Journal on Banking, Accounting and Business 2(2), June 2023: 56-63

Copyright@ REST Publisher 60

unknown, we approximate it with the RMS of parameter updates until the previous time step. By replacing the

learning rate η in the previous update rule with RMS[∆θ]t−1, we arrive at the Adadelta update rule: ∆θt = −

RMS[∆θ]t−1 RMS[g]t gt θt+1 = θt + ∆θt Adadelta eliminates the need for a default learning rate, as it has been

seamlessly integrated into the update rule.

Unveiling an Adaptive Learning Approach: RM Sprop: RMSprop, an adaptive learning rate technique, was

introduced by Geoff Hinton during Lecture 6e of his Coursera Class12. It emerged independently around the same

time as Adadelta, both aiming to address the diminishing learning rates experienced in Adagrad. Remarkably,

RMSprop's first update vector is identical to the one derived for Adadelta: E[g^2]t = 0.9E[g^2]t−1 + 0.1g^2t θt+1

= θt − η p E[g^2]t + gt Similar to Adadelta, RMSprop also divides the learning rate by an exponentially decaying

average of squared gradients. Hinton suggests setting γ to 0.9, while a recommended default value for the learning

rate η is 0.001.

Unleashing the Power of Adaptive Moment Estimation: Adam, short for Adaptive Moment Estimation, is a

remarkable technique [10] that computes adaptive learning rates for individual parameters. It goes beyond the

capabilities of Adadelta and RMSprop by incorporating both an exponentially decaying average of past squared

gradients (vt) and an exponentially decaying average of past gradients (mt), similar to momentum: mt = β1mt−1

+ (1 − β1)gt vt = β2vt−1 + (1 − β2)g^2t (19) The parameters mt and vt represent estimations of the first moment

(mean) and second moment (uncentered variance) of the gradients, respectively, hence the name of the method.

Since mt and vt are initialized as vectors of zeros, the authors of Adam acknowledge that they tend to be biased

towards zero, particularly during the initial time steps and when the decay rates (β1 and β2) are small. To address

these biases, bias-corrected estimates of the first and second moments are computed: m̂t = mt / (1 − β^t1) v̂t = vt

/ (1 − β^t2) (20) These bias-corrected estimates are then utilized to update the parameters, following a similar

approach as Ad delta and RM Sprop. This leads to the Adam update rule: θt+1 = θt − η / √(v̂t + ε) · m̂t (21) The

authors propose default values of 0.9 for β1, 0.999 for β2, and 10^(-8) for ε. Empirical evidence demonstrates the

effectiveness of Adam in practical scenarios, showcasing its superiority compared to other adaptive learning-

method algorithms.

Breaking Boundaries with Ada Max: In the pursuit of further optimization, the Adam update rule introduced a

factor, vt, which scaled the gradient in relation to the 2 norm of past gradients (via the vt−1 term) and the current

gradient's 2 norm, |gt|^2: vt = β2vt−1 + (1 − β2)|gt|^2 (22) To extend this update to the p norm, denoted by βp^2,

we can introduce a generalization. However, norms with large p values often suffer from numerical instability,

making 1 and 2 norms more prevalent in practical applications. Interestingly, ∞ norm exhibits remarkable stability.

Thus, Ada Max [10] was proposed, demonstrating convergence of vt with `∞ norm to a more stable value. To

differentiate from Adam, the authors employ the variable ut, which represents the infinity norm-constrained vt: ut

= β∞^2vt−1 + (1 − β∞^2)|gt|∞ = max(β2 · vt−1, |gt|) (24)By incorporating this into the Adam update equation and

replacing √v̂t + ε with ut, we unveil the Ada Max update rule: θt+1 = θt − η / ut · m̂t (25) Notably, as ut utilizes

the max operation, it avoids the bias towards zero observed in mt and vt of Adam. Consequently, a bias correction

for ut is unnecessary. For optimal results, recommended default values are η = 0.002, β1 = 0.9, and β2 = 0.999.

Ada Max dares to transcend conventional boundaries and unlocks a new realm of optimization possibilities.

Embracing Momentum's Evolution: Nadam As we have previously explored, Adam is a fusion of RMSprop and

momentum, where RMSprop contributes the exponentially decaying average of past squared gradients, vt, and

momentum factors in the exponentially decaying average of past gradients, mt. Moreover, we discovered that

Nesterov accelerated gradient (NAG) surpasses the effectiveness of vanilla momentum. In a quest to combine the

strengths of Adam and NAG, Nadam (Nesterov-accelerated Adaptive Moment Estimation) [7] was conceived. To

incorporate NAG into Adam, a modification of its momentum term, mt, is required. Let us recall the momentum

update rule using our current notation: gt = ∇θt J(θt) mt = γmt−1 + ηgt θt+1 = θt − mt This equation once again

highlights that momentum involves taking a step in the direction of the previous momentum vector and another

step in the direction of the current gradient. NAG allows for a more accurate gradient step by updating the

parameters with the momentum step before computing the gradient. By modifying the gradient gt, we arrive at

NAG: gt = ∇θt J(θt − γmt−1) mt = γmt−1 + ηgt θt+1 = θt − mt Dozat proposes a modification to NAG as follows:

Rather than applying the momentum step twice, once to update the gradient gt and a second time to update the

parameters θt+1, we now directly apply the look-ahead momentum vector to update the current parameters: gt =

∇θt J(θt) mt = γmt−1 + ηgt θt+1 = θt − (γmt + ηgt) Notice that instead of using the previous momentum vector

mt−1 as in Equation 27, we employ the current momentum vector mt for looking ahead. To incorporate Nesterov

momentum into Adam, we can similarly replace the previous momentum vector with the current momentum

vector. Let's revisit the Adam update rule (note that we do not need to modify v̂t): mt = β1mt−1 + (1 − β1)gt m̂t

= mt 1 − β t 1 θt+1 = θt − η √ v̂t + m̂t Expanding the second equation using the definitions of m̂t and mt, we

obtain: θt+1 = θt − η √ v̂t + (β1mt−1 1 − β t 1 (1 − β1)gt 1 − β t 1) (31) Notably, β1mt−1 1−β t 1 represents the

Vishal.et.al / REST Journal on Banking, Accounting and Business 2(2), June 2023: 56-63

Copyright@ REST Publisher 61

bias-corrected estimate of the momentum vector from the previous time step. Consequently, we can replace it

with m̂t−1: θt+1 = θt − η √ v̂t + (β1m̂t−1 + (1 − β1)gt 1 − β t 1) (32) This equation bears a striking resemblance

to our expanded momentum term in Equation 27. By incorporating Nesterov momentum as we did in Equation

29, we simply replace the bias-corrected estimate of the momentum vector from the previous time step.

Illuminating Algorithmic Behaviors: In these captivating visuals (Figure 4a and Figure 4b), we gain valuable

intuitions into the optimization behaviors exhibited by the presented optimization algorithms [13].

FIGURE 4. Source and full animations: Alec Radford

Figure 4a unveils the paths traversed by these algorithms on the contours of a loss surface, specifically the Beale

function. Originating from the same starting point, they embark on distinct trajectories towards the minimum.

Notably, degrade, Adadelta, and RMSprop promptly set off in the right direction, converging with similar

swiftness. Meanwhile, Momentum and NAG encounter detours, akin to a ball rolling off course down a hill.

Nevertheless, NAG swiftly corrects its path, leveraging its enhanced responsiveness by looking ahead, ultimately

steering towards the minimum. Turning our attention to Figure 4b, we explore the algorithms' behavior when

confronted with a saddle point—a point where one dimension exhibits a positive slope while the other dimension

displays a negative slope—posing a challenge for SGD, as mentioned earlier. Here we observe that SGD,

Momentum, and NAG grapple with breaking symmetry, although the latter two eventually triumph in escaping

the saddle point. On the other hand, ad grad, RMSprop, and ad delta promptly descend down the negative slope,

with Adadelta leading the charge. It becomes evident that adaptive learning-rate methods, namely Ad grad, Ad

delta, RM Sprop, and Adam, prove most adept in such scenarios, showcasing superior convergence capabilities.

These captivating visualizations provide compelling evidence that adaptive learning-rate methods offer optimal

convergence and effectively navigate complex optimization landscapes. Deciding on the Optimal Optimizer: A

Wise Choice: Now, the question arises: Which optimizer should you employ? Consider the nature of your input

data. If it leans towards sparsity, then it is highly likely that you will achieve optimal results by employing one of

the adaptive learning-rate methods. An additional advantage lies in the fact that you won't need to fine-tune the

learning rate, as the default value often yields excellent outcomes. To summarize, RMSprop emerges as an

extension of Adagrad, addressing its issue of rapidly diminishing learning rates. Adadelta shares similarities with

RM Sprop, but instead of using the root mean square (RMS) of parameter updates in its numerator update rule, it

utilizes the RMS of gradients. Finally, Adam incorporates bias-correction and momentum into the framework of

RMSprop. Thus far, RM Sprop, Adadelta, and Adam showcase comparable performance in similar scenarios.

Kingma et al. [10] shed light on Adam's slight advantage over RMSprop, particularly in later stages of

optimization when gradients become sparser, thanks to its bias-correction mechanism. Consequently, Adam could

potentially be the optimal choice overall. Interestingly, recent studies reveal a preference for vanilla SGD

(Stochastic Gradient Descent) without momentum and a straightforward learning rate annealing schedule. While

SGD often manages to find a minimum, it may require significantly more time compared to some of the other

optimizers. It heavily relies on a robust initialization and annealing schedule and may encounter challenges in

escaping saddle points instead of local minima. Hence, if your priority lies in fast convergence and you are training

a deep or complex neural network, selecting one of the adaptive learning rate methods would be wise. The key to

making an informed decision lies in understanding your data's characteristics and aligning them with the strengths

and capabilities of the various optimization algorithms at your disposal

5. REIMAGINING PARALLELIZATION AND DISTRIBUTION OF SGD:

ADVANCEMENTS UNVEILED

Vishal.et.al / REST Journal on Banking, Accounting and Business 2(2), June 2023: 56-63

Copyright@ REST Publisher 62

Considering the widespread adoption of large-scale data solutions and the accessibility of low-cost clusters, it is

evident that distributing SGD to further expedite its progress is a logical choice. SGD, in its inherent form, operates

sequentially—step by step, inching closer to the minimum. While it delivers satisfactory convergence, it can prove

sluggish, especially when dealing with vast datasets. In contrast, asynchronous execution of SGD accelerates the

process but often suffers from suboptimal communication between workers, resulting in compromised

convergence. Additionally, we can also parallelize SGD on a single machine without necessitating a massive

computing cluster. In this section, we explore the algorithms and architectures proposed to optimize the

parallelized and distributed versions of SGD. Introducing Hogwild!: In their work, Niu et al. [15] introduce a

parallel update scheme called Hogwild!, enabling simultaneous SGD updates on CPUs. The scheme allows

processors to access shared memory without the need for parameter locking. This approach is effective for sparse

input data, where each update affects only a fraction of the parameters. The authors demonstrate that Hogwild!

achieves near-optimal convergence rates in such cases, as the likelihood of processors overwriting vital

information is minimal. Unveiling Downpour SGD: Downpour SGD, an asynchronous variant of SGD, was

employed by Dean et al. [6] in their Dist Belief framework (predecessor to Tensor Flow) at Google. It involves

running multiple replicas of a model in parallel, each processing a subset of the training data. These replicas

communicate their updates to a parameter server, distributed across multiple machines. Each machine is

responsible for storing and updating a fraction of the model's parameters. However, since the replicas do not

engage in direct communication or share weights and updates, their parameters are constantly at risk of diverging,

impeding convergence. Delay-Tolerant Algorithms for SGD: McMahan and Streeter [12] extend Ada Grad to the

parallel setting by introducing delay-tolerant algorithms that adapt not only to past gradients but also to the delays

in updates. This approach has proven to be effective in practical scenarios. The Power of Tensor Flow: Tensor

Flow [1], Google's recently open-sourced framework for implementing and deploying large-scale machine

learning models, builds upon their experience with Dist Belief. It is already extensively employed internally for

computations on a diverse array of mobile devices and large-scale distributed systems. The distributed version,

released in April 2016, leverages a computation graph split into subgraphs for each device, with communication

facilitated through Send/Receive node pairs. Elastic Averaging SGD: In the pursuit of innovation, Zhang et al.

[23] propose Elastic Averaging SGD (EASGD), which connects the parameters of asynchronous SGD workers

with an elastic force represented by a center variable stored in the parameter server. This design enables local

variables to deviate further from the center variable, fostering enhanced exploration of the parameter space.

Empirical evidence demonstrates that this heightened exploration capacity leads to improved performance by

uncovering new local optima. These advancements in parallelization and distribution of SGD showcase the

ongoing efforts to optimize its performance, enabling faster convergence and wider applicability in diverse

computing environments.

6. UNVEILING ADDITIONAL STRATEGIES FOR ENHANCING SGD

PERFORMANCE

In this section, we explore supplementary strategies that can be employed in conjunction with the aforementioned

algorithms to further optimize the performance of SGD. For a comprehensive overview of additional effective

techniques, we recommend referring to [11]. Shuffling and Curriculum Learning: Typically, it is desirable to

present training examples to the model in a randomized order to prevent optimization algorithm bias.

Consequently, shuffling the training data after each epoch is often a prudent choice. However, in certain scenarios

where the objective is to tackle progressively challenging problems, presenting the examples in a meaningful

order can actually improve performance and convergence. This approach, known as Curriculum Learning [3],

establishes a structured order for the examples. Zaremba and Sutskever [21] successfully employed a combined

or mixed strategy in training LSTMs for evaluating simple programs, outperforming the naive approach that sorts

examples solely based on increasing difficulty. Harnessing the Power of Batch Normalization: To facilitate

effective learning, it is customary to normalize the initial parameter values by initializing them with zero mean

and unit variance. However, as training progresses and parameter updates vary, this normalization is lost, leading

to slower training and amplified changes as the network deepens. Batch normalization [9] restores these

normalizations for each mini-batch and enables backpropagation of changes through the operation. By

incorporating normalization into the model architecture, higher learning rates can be utilized, and less emphasis

needs to be placed on initialization parameters. Additionally, batch normalization serves as a regularize, reducing

or even eliminating the need for Dropout. Employing Early Stopping: As emphasized by Geoff Hinton, early

stopping represents a "beautiful free lunch" [16]. It is crucial to continuously monitor the error on a validation set

during training and exercise patience when observing insufficient improvement in validation error. Stopping the

training process at an appropriate stage can prevent unnecessary computations and resource consumption.

Embracing Gradient Noise: Neelakantan et al. [13] introduce the concept of adding noise following a Gaussian

distribution N(0, σ^2_t) to each gradient update. This is expressed by the equation: gt,i = gt,i + N(0, σ^2_t) (34)

Vishal.et.al / REST Journal on Banking, Accounting and Business 2(2), June 2023: 56-63

Copyright@ REST Publisher 63

The variance is annealed according to the following schedule: σ^2_t = η / (1 + t)^γ (35) The inclusion of such

noise enhances the robustness of networks against poor initialization and proves particularly beneficial for training

deep and complex networks. It is postulated that the introduced noise provides the model with additional

opportunities to escape and discover new local minima, which are more prevalent in deeper models. These

additional strategies expand the repertoire of techniques available to optimize SGD, enabling practitioners to

further enhance its performance in various settings.

7. CONCLUSION: UNVEILING THE POWER OF OPTIMIZING SGD

In this comprehensive article, we embarked on a journey through the realm of stochastic gradient descent (SGD),

exploring its three variants. Among them, mini-batch gradient descent emerged as the favored choice within the

machine learning community. Delving deeper into the optimization of SGD, we examined a plethora of algorithms

that are widely employed to maximize its potential. From the stalwart Momentum and Nesterov accelerated

gradient to the adaptive marvels of Adagrad, Adadelta, RM Sprop, Adam, Ada Max, and Nadam, we covered the

spectrum of optimization techniques. Furthermore, we explored various algorithms tailored specifically for

asynchronous SGD, enabling parallelization and distribution of computations. To elevate the performance of SGD

even further, we ventured into additional strategies that prove invaluable. We unraveled the benefits of shuffling

and curriculum learning, where intelligently ordering training examples can enhance performance and

convergence. The transformative power of batch normalization, a technique that restores parameter normalizations

during training, was unveiled. Additionally, we highlighted the importance of early stopping, a valuable approach

for monitoring and halting training when validation error fails to improve sufficiently. By assimilating these

diverse strategies, ranging from algorithmic choices to auxiliary techniques, practitioners can unlock the full

potential of SGD, revolutionizing the optimization landscape for a broad array of applications. In summary, this

article serves as a comprehensive guide, equipping readers with an arsenal of tools and knowledge to unleash the

true power of SGD optimization.

REFERENCES

[1]. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... Zheng, X. (2015). TensorFlow: Large-Scale

Machine Learning on Heterogeneous Distributed Systems.

[2]. Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2012). Advances in Optimizing Recurrent Networks.

[3]. Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum Learning. Proceedings of the 26th

Annual International Conference on Machine Learning.

[4]. Darken, C., Chang, J., & Moody, J. (1992). Learning Rate Schedules for Faster Stochastic Gradient Search. Neural

Networks for Signal Processing II Proceedings.

[5]. Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014). Identifying and Attacking

the Saddle Point Problem in High-Dimensional Non-Convex Optimization.

[6]. Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., ... Ng, A. Y. (2012). Large-Scale Distributed

Deep Networks. Neural Information Processing Systems.

[7]. Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. ICLR Workshop.

[8]. Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic

Optimization. Journal of Machine Learning Research.

[9]. Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal

Covariate Shift.

[10]. Kingma, D. P., & Ba, J. L. (2015). Adam: A Method for Stochastic Optimization. International Conference on

Learning Representations.

[11]. LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient BackProp. Neural Networks: Tricks of the

Trade.

[12]. McMahan, H. B., & Streeter, M. (2014). Delay-Tolerant Algorithms for Asynchronous Distributed Online

Learning. Advances in Neural Information Processing Systems.

[13]. Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., & Martens, J. (2015). Adding Gradient

Noise Improves Learning for Very Deep Networks.

[14]. Nesterov, Y. (n.d.). A Method for Unconstrained Convex Minimization Problem with the Rate of Convergence

O(1/k2).

[15]. Niu, F., Recht, B., Christopher, R., & Wright, S. J. (2011). Hogwild!: A Lock-Free Approach to Parallelizing

Stochastic Gradient Descent.

[16]. [16] Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global Vectors for Word Representation.

Conference on Empirical Methods in Natural Language Processing.

[17]. Qian, N. (1999). On the Momentum Term in Gradient Descent Learning Algorithms. Neural Networks.

[18]. Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method

