Data Analytics and Artificial Intelligence

Vol: 3(2), 2023
REST Publisher; ISBN: 978-81-948459-4-2
Website: http://restpublisher.com/book-series/daai/
DOI: https://doi.org/10.46632/daai/3/2/37

Certain Iterative Methods to Solve System of Equations by Python Programming

\author{

* ${ }^{1}$ ThangaMurugeshwari.V, ${ }^{2}$ Shobanapriya.M, ${ }^{3}$ Abhinaya. B
 St. Joseph's College of Arts and Science for Women, Hosur, Tamil Nadu, India. *Corresponding Author Email: shobanapriya09@gmail.com
}

Abstract

In the 1980s and 1990s, a field known as scientific computing or computational science began to emerge as a result of the increasing significance of using computers to carry out numerical operations in order to solve mathematical models of the world. This paper examines numerical analysis's application from a computer science view point; see[3][4][5].In this paper, Iterative methods like Gauss Jacobi and Gauss Serial were used to solve the system of simultaneous equation by using Python Programming.

Key Words: Numerical Analysis, Gauss Jacobi and Gauss Seidal

1.INTRODUCTION

Numerical techniques is essentially a discipline of mathematics where issues are resolved numerically and with the use of Now include so phisticated numerical analysis software, enabling many users to undertake modeling even if they are not familiar with the underlying mathematics. Python programming is general-purpose interpreted, interactive, object oriented and high level programming language[2].

2. GAUSS JACOBI METHOD

Consider the system of equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=c_{2} \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=c_{n}
\end{gathered}
$$

We assume that the coefficient matrix of this system is diagonally dominant [(i.e.) the system is a diagonal system. The above equations can be written as

$$
\begin{align*}
& x_{1}=\begin{array}{l}
1 \quad\left[c_{1-a 12} x_{2-a 13} x 3-\cdots-a_{1} n x n\right]-(1) \\
a_{11}
\end{array} \\
& x_{2}=\begin{array}{l}
1 \quad\left[c_{2-a 21} x_{1-a 23} x 3-\cdots-a 2 n x n\right]-(1) \\
a_{22}
\end{array} \\
& x_{\mathrm{n}}=\begin{array}{l}
1 \quad\left[c_{\mathrm{n}-a \mathrm{n} 1} x_{1-a \mathrm{n} 3} x 3-\cdots-a n,-1 x n-1\right]-(1) \\
a_{\mathrm{nn}}
\end{array} \tag{n}
\end{align*}
$$

We start the initial z values for the variables $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ to be

$$
{ }_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}, \ldots, x^{(0)}
$$

Using this values in (1), (2), (3), \ldots (n) respectively we get $x^{(1)}, x^{(1)}, x^{(1)}, \ldots, x^{(1)}$

$$
\text { Putting } x={ }^{(1)}, x=x^{(1)}, \ldots, x=x^{(1)} \text { in }
$$

(1),(2),(3),..(n) respectively we get the next approximations $x_{1} x^{(2)}{ }_{2} x^{(2)}{ }_{, 3} x^{(2)}, \ldots,{ }_{n} x^{(2)}$. In general if the values of $x_{1}, 2, x_{3}, \ldots x_{n}$ in ther ${ }^{\text {th }}$ alteration $\operatorname{are}_{1} x^{(n)},{ }_{2} x^{(n)},{ }_{3} x^{(n)}, \ldots,{ }_{n} x^{(n)}$ then

$$
\begin{aligned}
& \underset{1}{(r+1)}{\underset{a}{11}}_{1}^{a_{11}}\left\lceil c_{1}-a_{122_{2}^{2}}^{(r)} \sim{ }_{13}(r)\right. \\
& -a_{n} \quad x_{n}^{(r)} 1 \\
& {\underset{\sim}{x}}_{(r+1)}^{\cdots-a_{2 n n^{(r)}}^{a_{22}}} \mathrm{IC}_{2}-u_{21 \chi_{1}}^{(r)}-u_{23 x_{2}}^{(r)}- \\
& z_{1} \quad={ }_{1}^{1}[54.81=3.6533 \\
& \left.\underset{n}{(r+1)^{1}} \frac{1}{\boldsymbol{a}_{n n}} \right\rvert\, c_{n}-a_{n 1 i}(r) \sim{ }_{n 22}(r) \\
& \left.-a_{n-1} x_{n}^{(r)}\right]
\end{aligned}
$$

Solving equations using Jacobi's iteration method

$$
\begin{gathered}
3 x+4 y+15 z=54.8 \\
x+12 y+3 z=39.66 \\
10 x+y-2 z=7.74
\end{gathered}
$$

Solution: Coefficient matrix of the given set

$$
\text { Of equation is } A=\begin{array}{ccl}
3 & 4 & 15 \\
{[1} & 12 & 3 \\
10 & 1 & -2
\end{array}
$$

We note that A is not diagonally dominant

$$
\text { Also, } \left.\mathrm{A} \sim \quad \begin{array}{ccc}
10 & 1 & -2 \\
{[1} & 12 & 3 \\
3 & 4 & 15
\end{array}\right] R_{1}<->R_{3}
$$

Which is diagonally dominant. The given system becomes

$$
\begin{align*}
& 10 x+y-2 z=7.74 \ldots \ldots .(1) \\
& x+12 y+3 z=39.66 \tag{2}\\
& 3 x+4 y+15 z=54.8 \tag{3}
\end{align*}
$$

From (1), (2)and we gets

$$
\begin{array}{r}
\mathrm{X}=1 \frac{1}{10}[7.74-\mathrm{y}+2 \mathrm{z}] . \\
\mathrm{Y}=\frac{1}{12}[39.66-\mathrm{x}-3 \mathrm{z}] . \\
\mathrm{Z}={ }^{1} \frac{-}{15}[54.8-3 \mathrm{x}-4 \mathrm{y}] . \tag{6}
\end{array}
$$

First Iteration:
Let the initialvaluebex ${ }_{o}=y_{0}=z={ }_{0}$
0 . From (4), (5) and (6)

$$
\begin{aligned}
& x_{\overline{1}}=1\lceil .74\rceil=0.774 \\
& y_{\overline{1}}=^{1}\lceil 39.66\rceil=3.305
\end{aligned}
$$

Second Iteration:

Third Iteration:
$x_{3}=\frac{1}{1 U}\left\lceil 7.74-y_{2}+2 z_{2}\right]=\frac{1}{1 U}[7.74-$
$2.3272+5.23441=1.0647$

$$
y_{3}=\frac{1}{12}\left\lceil 39.66-x_{2}-3 z_{2}\right]=\frac{1}{12}[39.66-1.1742-
$$

$$
7.8516]=2.5529
$$

$$
\begin{aligned}
& z_{3}=\frac{1}{15}\left[54.8-3 x_{2}-4 y_{2}\right]=\frac{1}{15}[54.8-3.5226- \\
& 9.3088]=2.7979
\end{aligned}
$$

Fourth Iteration:

$$
\begin{aligned}
& x_{4}=\frac{1}{10}\left[7.74-y_{3}+2 z_{3}\right]=\frac{1}{10}[7.74- \\
& 2.5529+5.5958]=1.0783 \\
& y_{4}=\frac{1}{12}\left[39.66-x_{3} 3 z\right]_{3}=\frac{1}{12}[39.66-1.0647- \\
& 8.3937]=2.5168 \\
& z_{4}=\frac{1}{15}\left[54.8-3 x_{3}-4 y_{3}\right]=\frac{1}{15}[54.8-3.1941- \\
& 10.2116]=2.7596
\end{aligned}
$$

Fifth Iteration:
$x_{5}=\frac{1}{10}\left\lceil 7.74-y_{4}^{+} 2 z\right]_{\overline{4}} \quad \frac{1}{10}\lceil 7.74-$
$2.5168+5.5192]=1.0742$
$y_{\overline{5}} \frac{1}{1 /}\left[39.66-x_{4}-3 z_{4}\right]=\frac{1}{1 L}\lceil 39.66-1.0783-$
$8.2788]=2.5252$
$z=1 \frac{15}{[54.8-3 x-4 y]_{4}^{=1}}{\underset{15}{15}}^{154.8-5.254 y-}$
10.0672] $=2.7665$

$$
\begin{aligned}
& x_{2}^{=1} \overline{10}_{10}^{\left[7.74-y_{1}+2 z\right]_{1}^{1}} \overline{10}^{1 / . / 4-s .50 s} \\
& +7.3066]=1.1742 \\
& \left.{ }_{2} \stackrel{v=\frac{1}{12}}{|39.66-x-3 z|} \underset{1}{\mid}=1 \quad\right]_{12}^{\text {[39.66-0.774- }} \\
& \text { 10.9599] }=2.3272 \\
& { }_{2}^{z=1}{ }_{15}^{[54.8-3 x-4 y]_{1}^{1}=1} \overline{15}^{[54.8-2.322-} \\
& \text { 13.22] }=2.6172
\end{aligned}
$$

Sixth Iteration:

$$
\begin{aligned}
& x_{6}=\frac{1}{10}\left[7.74-y_{5}+2 z_{5}\right]=1 / \frac{10}{10}[7.74- \\
& 2.5252+5.533]=1.0783 \\
& y_{\overline{6}} \quad \frac{1}{12}\left[39.66-x_{5}-3 z_{5}\right]=\frac{1}{12}[39.66-1.0742- \\
& 8.2995]=2.5239 \\
& z \overline{\overline{6}} \quad \frac{1}{13}\left[54.8-3 x_{5}-4 y_{5}\right]=\frac{1}{15}[54.8-3.2226- \\
& 10.1008]=2.7651
\end{aligned}
$$

Seventh Iteration:

$$
\begin{aligned}
& x_{\overline{\overline{7}}} \quad \frac{1}{1 v}\left[7.74-y_{6}+2 z_{6}\right]=\frac{1}{1 v} 7.74- \\
& 2.5239+5.5302]=1.0746 \\
& y_{7}=\frac{1}{12}\left[39.66-x_{6}-3 z_{6}\right]=\frac{1}{12}[39.66-1.0748- \\
& 8.2953]=2.5242 \\
& z_{7}=\frac{1}{1 b}\left[54.8-3 x_{6}-4 y_{6}\right]=\frac{1}{1 b}[54.8-3.2244- \\
& 10.0956]=2.7653
\end{aligned}
$$

After 7 iteration the difference in $6^{t^{h}}$ and $7 t^{h}$ iteration are negligible. Hence the solution of the system is given by $\mathrm{x}=1.075 ; \mathrm{y}=2.524$; and $\mathrm{z}=2.765$

Python Code to Solve Simultaneous Equation by Gauss Jacobi:

import numpy as np from scipy. linalg import solve defjacobi (A,b,x,n):
$\mathrm{D}=\mathrm{np} . \operatorname{diag}(\mathrm{A})$
$\mathrm{R}=\mathrm{A}-\mathrm{np} . \operatorname{diag} \operatorname{flat}(\mathrm{D})$
For iin range (n):
$x=(b-n p \cdot \operatorname{dot}(R, x)) / D$ return x
R1=int(input("enter the number of rows:"))
$\mathrm{C} 1=\operatorname{int}($ input("enter the number of columns:"))
matrix $1=[]$
Print ("enter the entries row wise :")
For i in range (R1): $\mathrm{a}=[]$
For j in range (C 1): append (float (input ())) matrix 1.append (a)
R2=int (input("enter the number of rows:"))
C2=int (input("enter the number of columns:"))
matrix2=[]
print("enter the entries row wise:")for i in range(R2): $\mathrm{a}=[\mathrm{l}$ for j in range (C2):a. append (float (input()))
matrix2. Append (a)
A= np. Array (matrix1)
$\mathrm{b}=$ matrix 2
$\mathrm{x}=[1.0,1.0,1.0]$
$\mathrm{n}=25$
x=Jacobi (A,b,x,n)
print (solve(A,b))

Illustration of Gauss Jacobi in Jupyter Note

3. GAUSS SEIDAL METHOD

Gauss-Seidelite ration method is finement of Gauss-Jacobi method. As in Jacobi method let

$$
\begin{equation*}
x_{1}=\frac{1}{a_{11}}\left[c_{1}-a_{12} x_{2}-a_{13} x_{3}-\cdots-a_{1} \quad x_{n}\right] \tag{1}
\end{equation*}
$$

$x_{2}=\frac{1}{a_{22}}\left[c_{2}-a_{21} x_{1}-a_{23} x_{3}-\cdots-\right.$ $\left.a_{2 n} x_{n}\right]$-------- (2)
$\vdots \quad \vdots \quad \vdots$

$$
\begin{aligned}
& x_{n}=\frac{1}{a_{n n}}\left[c_{n}-a_{n 1} x_{2}-a_{n 2} x_{3}-\cdots-\right. \\
& \left.a_{n_{n}-1} x_{n}\right] \cdots-\cdots-\cdots(\mathrm{n})
\end{aligned}
$$

We start with the initial values ${ }^{(0)},{ }^{(0)}, \ldots, x^{(0)}$ and we get from(1)

$$
\text { (1) } \begin{gathered}
\left.\frac{1}{a_{11}} \right\rvert\, c_{1}-a_{12}^{(0)} \sim_{2}^{(0)} \\
\left.-a_{n 1} \begin{array}{c}
(0) \\
n
\end{array}\right]
\end{gathered}
$$

In the second equation we use ${ }^{(1)}$ for x And (0) for x etc. and $x{ }^{(0)}$ for $x \quad$. 「In the Jacobi ${ }^{3}$ Method ${ }^{3}$ we use ${ }_{1}{ }^{(0)} \stackrel{n}{\text { for }} x_{1} 1$.Thus we get

$$
\left.\begin{array}{c}
\text { (1) } \frac{1}{a_{22}}\left\lceil c_{2}-a_{11}^{(1)}\right)_{133}^{(0)} \\
-a_{n 2}(0) \\
n
\end{array}\right]
$$

Proceeding like this we find the first iteration values as ${ }^{(1)}, x^{(1)}, x^{(1)}, \ldots, x^{(1)}$ In general if the values of the variables in the $\mathrm{r}^{\text {th }}$ iteration are given by

$$
\begin{aligned}
& \left.-a_{n} \quad x_{n}^{(r)}\right] \\
& x_{\rho}{ }^{(r+1)}-\frac{1}{a_{22}}, c_{2}-a_{11 X_{1}}{ }^{(r)}-a_{13} X_{3}{ }^{(r)}-\cdots \\
& \left.-a_{2 n} x_{n}^{(r)}\right] \\
& \vdots \quad \vdots \quad \vdots \quad \text { : } \\
& x_{n}^{(r+1)}=\frac{1}{a_{n n}}\left[\begin{array}{c}
c_{n} \\
n 1
\end{array} 2^{(r+1)}-\right. \\
& \left.a_{n 2}{ }_{2}^{(r+1)}-\cdots-\sigma \quad n_{2-1} \quad x_{n-1}^{(r+1)}\right\rceil
\end{aligned}
$$

Solving system of equation using Gauss Seidel iteration method:

$$
\begin{gathered}
6 x+15 y+2 z=72 \\
x+y+54 z=110 \\
27 x+6 y-z=85
\end{gathered}
$$

Solution: Coefficient matrix of the given system of equation is

$$
\left.\begin{array}{ccc}
6 & 15 & 2 \\
\mathrm{~A}=\left[\begin{array}{cc}
1 & 1
\end{array}\right. & 54
\end{array}\right] \text { We note that } \mathrm{A} \text { is not }
$$

Diagonally dominant. However, it can be made diagonally dominant the rows
$R_{1}->R_{2}$ andthen $R_{2}<->R_{3}$

$$
\left.\mathrm{A}=\begin{array}{ccc}
27 & 6 & -1 \\
{[6} & 15 & 2 \\
1 & 1 & 54
\end{array}\right]
$$

Hence the corresponding system of equation is

$$
\begin{gathered}
27 x+6 y-z=85 \\
6 x+15 y+2 z=72 \\
x+y+54 z=110
\end{gathered}
$$

The above system of equation can be rewritten as

$$
\begin{align*}
& X=\frac{1}{27}(85-6 y+z) \ldots \tag{1}\\
& Y=\frac{1}{13}(\%-0 X-2 Z) \tag{2}\\
& Z=\frac{1}{15}(110-x-y) \tag{3}
\end{align*}
$$

First Iteration:

Putting $\mathrm{y}=0$ and $\mathrm{z}=0$ in (1) we get $\mathrm{x}=\frac{85}{27}$ 3.1481 ,

Putting $x=3.1481$ and $z=0$ in (2) we get $y=$ $\frac{1}{15}[72-6 \times 3.1481]=3.5408$

Putting $x=3.1481, y=3.5408$ in (3)
We get $z=\frac{1}{54}[110-3.1481-3.5408]=1.9132$
Second Iteration:
Putting $y=3.5408$ and $z=1.9132$ in
(1) we get $x=\underset{L /}{1}[85-6 \times 3.5408+1.9132]=$
2.4322

Putting $x=2.4322$ and $z=1.9132$ in
(2) we get $y=\frac{1}{10}[72-6 \times 2.4322-2 \times 1.9132]=$ 3.572

Putting $x=2.4322$ and $y=3.572$ in (3)
We get $\mathrm{z}=\frac{1}{54}[110-2.4322-3.572]=1.9258$
Third Iteration:
Putting $y=3.572$ and $z=1.9258$ in (1)
we get $x=\frac{1}{2}[85-6 \times 3.572+1.9258]=2.4257$

Putting $x=2.4257$ and $z=1.9258$ in
(2) we get $y=\frac{1}{15}[72-6 \times 2.4257-2 \times 1.9258]=$ 3.5729

Putting $x=2.4257$ and $y=3.5729$ in
(3) we get $z=\frac{1}{54}[110-2.4257-3.5729]=$
1.926

Fourth Iteration:
Putting $y=3.5729$ and $z=1.926$ in
(1)we get $x=1 \frac{1}{2 /}[85-6 \times 3.5729+1.926]=$ 2.4255

Putting $x=2.4255$ and $z=1.926$ in (2)
we get $\mathrm{y}=1 \frac{15}{15}[72-6 \times 2.4255-2 \times 1.926]=$
3.573

Putting $x=2.4255$ and $y=3.573$ in (3)
We get $\frac{1}{54}[110-2.4255-3.573]=1.926$
The values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in the third and fourth iteration is almost equal. The values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in the third and fourth iteration is almost equal. Hence the roots of the system are $x=2.4255, y=3.573, z=1.926$

Python Code to Solve Simultaneous Equation by Gauss Seidal:

$\mathrm{f} 1=$ lambda $\mathrm{x}, \mathrm{y}, \mathrm{z}:(85-6 * \mathrm{y}+\mathrm{z}) / 27 \mathrm{f} 2=$ lambda $\mathrm{x}, \mathrm{y}, \mathrm{z}:(72-6 * \mathrm{x}-2 * \mathrm{z}) / 15 \mathrm{f} 3=\operatorname{lambda} \mathrm{x}, \mathrm{y}, \mathrm{z}:(110-\mathrm{x}-\mathrm{y}) / 54$
$\mathrm{x} 0=0, \mathrm{y} 0=0, \mathrm{z} 0=0$, count $=1$
$\mathrm{e}=$ float (input ('Enter tolerable error:')) print('\n Count|tx|tyltz\n')
condition=True
while condition:

$$
\begin{aligned}
& \mathrm{x} 1=\mathrm{f} 1(\mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0) \\
& \mathrm{y} 1=\mathrm{f} 2(\mathrm{x} 1, \mathrm{y} 0, \mathrm{z} 0) \\
& \mathrm{z} 1=\mathrm{f} 3(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 0)
\end{aligned}
$$

print('\%dlt\%0.4ftt\%0.4flt\%0.4fln' \%(count,x1,y1,z1))
e1=abs(x0-x1);
e2=abs(y0-y1);
e3=abs(z0-z1);
count $+=1, \mathrm{x} 0=\mathrm{x} 1, \mathrm{y} 0=\mathrm{y} 1, \mathrm{z} 0=\mathrm{z}$, condition=e $1>\mathrm{e}$ ande $2>$ eande $3>\mathrm{e}$
print(\ln Solution : $\mathrm{x}=\% 0.3 \mathrm{f}, \mathrm{y}=\% 0.3 \mathrm{f}$ and $\mathrm{z}=\% 0.3 \mathrm{fln} \mathrm{n}^{\prime} \%(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1)$)

Illustration of Gauss Seidal in Jupyter Note:

4. CONCLUSION

In this paper, simultaneous equations are solved by Gauss Jacobi and Gauss Seidal methods. Our future works includes exploring various iterative methods to solve system of simultaneous equation by python Programming.

REFERENCES

[1].S.Arumugam, Ahangapandi Issac, Somasundaram.A, "Numericalmethods", citech publications.
[2].DhinaSuresh, Aswini.G, Jayanthi.P, AnushaPrem, "Problem Solving using Python", Charulatha Publications.
[3].L.Fosdick, E.Jessup, C.Schauble, and G. Domik (1996) An Introduction to High-Performance Scientific Computing, MIT Press.
[4].H. Goldstine (1977) A History of Numerical Analysis: From the 16th Throughthe19thCentury,Springer-Verlag.
[5].G. GolubandC.Van M. Heath (1997) Scientific Computing: An Introductory Survey, McGraw-Hill Inc.

