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Abstract 

The era of automation has arrived. A few decades ago, almost all flying machines were operated by humans. Nowadays, 

practically all aircraft are either fully automated or on their way there. The advent of features like autopilot is the result of the 

drive toward complete automation. Unmanned aerial vehicles (UAVs) are powered aircraft without a crew. It employs a gas 

or electric engine to fly and adheres to the fundamentals of aerodynamics. UAVs are easier to create and cost less to produce 

than manned aircraft. Compared to traditional manned aircraft, UAVs offer greater flexibility, safety, and mobility. While 

human aircraft are required to use an airfield, certain UAVs can take off and land without one. We can tell those landing 

incidents are likely to occur when UAVs are landed thanks to the extensive expert experimentation and historical data on 

UAV landings. Currently, determining the quality of a UAV landing is primarily based on the experience of the experts or a 

single metric exceeding the limit, with unavoidably subjective and unscientific findings. This study analyses and improves 

the unmanned aerial vehicle's landing quality using the MCDM approach TOPSIS.  LQ1 is ranked eight, LQ2 is ninth rank, 

LQ3 is third-ranked, LQ4 is ranked fourth, LQ5 is second-ranked, LQ6 is ranked fifth, LQ7 is ranked sixth, LQ8 is ranked 

first and LQ9 is seventh-ranked. The result of the landing performance of the unmanned aerial vehicle by using TOPSIS is 

eighth landing is best followed by the fifth and third. 
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Introduction 
Unmanned aerial vehicles (UAVs) have been quite popular over the past few decades in both military and civilian 

applications such as aerial photography, tracking, and surveillance. The two primary categories of these UAVs are fixed-

wing and rotary-wing, each of which has advantages and disadvantages of its own. [1].The big cabin, excellent flying 

efficiency, and high cruising speed and altitude of fixed-wing UAVs allow them to perform a variety of jobs that call for the 

aircraft to carry a heavy payload or have long endurance and range. Fixed-wing UAVs can have limitations, though. Fixed-

wing aircraft applications are constrained by the need for a runway or catapult for take-off and landing[2]. But the range and 

endurance of rotary-wing aircraft are short. The development of a small-scale UAV that can achieve extended flight 

endurance and range while also taking off and landing vertically is still a difficulty [3].Due to their cheaper cost, greater 

flexibility, and ease of mobility, unmanned systems have recently seen widespread development. These systems have 

enormous potential for use in detection, territorial defence, rescue missions, and surveillance, among other things. Unmanned 

aerial vehicles (UAVs) have become more crucial in disaster relief, naval strikes, and other operations as a representative 

unmanned system. [4]. The rotorcraft UAV's capability, however, is considerably limited by the speed and endurance limit 

while performing missions that call for extended endurance or wide-range coverage. As a result, creating an aerial system 

that combines the benefits of both, operates in a wider envelope (i.e., vertical take-off, transition, cruise, and vertical 

landing), and contributes to a much wider range of applications is a recently emerging and promising trend in UAV design, 

particularly for miniature UAVs. The hybrid UAV, also known as a fixed-wing Vertical Take-off and Landing (VTOL) 

UAV, is created in response to this pressing necessity [5,6].A manned aircraft may experience a catastrophe if a UAV 

crashes on the ground due to technical problems, but there is 0% likelihood that anyone would perish. UAVs have attracted a 

lot of interest in the scientific research community because of their life-saving capability and widespread utilisation, 

especially concerningtheir landing [7].All completely autonomous UAV systems rely on autonomous take-off and landing, 

which is both their most important and difficult component. In missions involving repeated flight operations and in 

information collecting and delivery applications, where it is necessary to reach a specific, desired position and then return to 

a base, the ability to land precisely is crucial. UAV platforms, primarily micro aerial vehicles, must be able to dock 

autonomously into a recharge station. [8,9]. We can tell those landing incidents are likely to occur when UAVs are landed 

thanks to the extensive expert experimentation and historical data on UAV landings. Examples of common landing accidents 

that can be summed up by years of landing experience include tail strikes, damage to the landing gear, the UAV leaving the 

runway, and the UAV losing control [10]. While the pitch angle, typical acceleration, distance to travel, and ground velocity 

can all be used to directly reflect these incidences. To evaluate the landing quality, this study chooses the pitch angle, normal 

acceleration, distance to go, and ground velocity as the evaluation parameters. 
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Materials and Methods 

There have been several improved MCDM approaches established since the 1950s, and they vary from one another in terms 

of the quantity and quality of new information needed, the methodology utilised, the ease of use, the sensitivity instruments 

used, and the mathematical properties they check. [11,12].Since real-world decision-making issues are frequently 

complicated, it is impossible to determine the best course of action by focusing only on one criterion or point of view. 

Market operation necessitates some understanding of the factors leading to critical circumstances and insolvency. Learning 

the factors that influence the emergence and demise of workable alternatives is essential. [13].The complexity of economic 

decisions has expanded significantly over the past few decades, emphasising the significance of creating and utilising 

sophisticated and effective quantitative analysis approaches to assist and facilitate economic decision-making. [14]. 
The TOPSIS method uses a ranking system based on how closely a desire resembles the ideal response. This method is 

currently one of the most used ones for Multiple Criteria Decision Making (MCDM). The TOPSIS approach was primarily 

developed for use with actual value-only data. When comparing alternatives to local criteria, it can be impossible to give 

exact scores; as a result, these evaluations are instead thought of as intervals. [15,16].The final alternative should be the one 

that is furthest from both the positive ideal solution and the negative ideal solution. This is the cornerstone of the TOPSIS 

method. The theory and applications of TOPSIS have been the subject of numerous publications and papers. [17]. 

TOPSIS is one of the most well-liked methods for multi-criteria decision analysis. The concept was created by Hwang and 

Yoon, with Yoon adding to it. This method states that the best choice is the one that is most distant from the negative ideal 

solution and most near to the positive ideal solution (PIS) (NIS). PIS is a hypothetical option that simultaneously increases 

the benefit criteria (B) and decreases the cost criteria (C) [18]. While concurrently increasing the cost criteria, NIS 

simultaneously reduces the benefit criteria. The option with the shortest Euclidean distance from PIS and the greatest 

distance from NIS is the best choice. After each alternative's proximity coefficient has been calculated in the last stage, the 

options are arranged using the closeness coefficient (CCi) in descending order. [19]. 

Step 1: The decision matrix X, which displays how various options perform concerning certain criteria, is created. 

    (1) 

Step 2: Weights for the criteria are expressed as 

 

𝑤𝑗 =   𝑤1  ⋯ 𝑤𝑛 ,     (2) 

 

here,  𝑤1  ⋯  𝑤𝑛 =𝑛
𝑗 =1 1 

 

Step 3: The matrix  𝑥𝑖𝑗 's normalized values are computed as 

 

𝑛𝑖𝑗 =  
𝑥𝑖𝑗

  𝑥𝑖𝑗
2𝑚

𝑖=1
2

                  (3)    

Weighted normalized matrix  𝑁𝑖𝑗  is calculated by the following formula 

 

𝑁𝑖𝑗 = 𝑤𝑗 × 𝑛𝑖𝑗                           (4) 

 

Step 4: We'll start by determining the ideal best and ideal worst values: Here, we must determine whether the influence is 

"+" or "-." If a column has a "+" impact, the ideal best value for that column is its highest value; if it has a "-" impact, the 

ideal worst value is its lowest value. 

 

Step 5: Now we need to calculate the difference between each response from the ideal best, 

 

𝑆𝑖
+ =   (𝑁𝑖𝑗 − 𝐴𝑗

+)2𝑛
𝑗=1               (5) 

 

Step 6: Now we need to calculate the difference between each response from the ideal worst, 

 

𝑆𝑖
− =   (𝑁𝑖𝑗 − 𝐴𝑗

−)2𝑛
𝑗=1   (6) 

 

Step 7: Now we need to calculate theCloseness coefficient of ith alternative 
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The Closeness Coefficient's value illustrates how superior the alternatives are in comparison. A larger 𝐶𝐶𝑖  denotes a 

substantially better alternative, whereas a smaller 𝐶𝐶𝑖denotes a significantly worse alternative. 

The UAV's landing time determines the quality of the landing to the greatest extent possible, reflecting the largest impact of 

each flying parameter. As a result, utilising the flight parameters of landing time to assess flight quality is representative 

[20]. Pitch angle, normal acceleration, distance to fly, and ground velocity of landing time are chosen in this research as 

significant factors to evaluate the landing quality of UAVs based on the experience of the relevant specialists. 

 

Analysis and Discussion 

TABLE 1. Performance rating matrix 

  EP1 EP2 EP3 EP4 

LQ1 -0.2137 14.68 -109.851 25.229 

LQ2 -1.0075 17.76 -152.576 30.131 

LQ3 1.4838 15.45 -128.162 28.997 

LQ4 1.3107 15.45 -30.5037 28.623 

LQ5 1.904 16.99 -128.162 26.974 

LQ6 1.2201 19.31 -33.5555 24.77 

LQ7 0.7998 20.08 -67.1254 25.292 

LQ8 2.0358 13.13 0.01428 28.583 

LQ9 -0.0351 16.99 -76.2808 30.094 

 

Table 1 shows the value of the dataset of landing performance of UAVs. Here pitch angle (EP1), normal acceleration (EP2), 

distance to fly (EP3) and ground velocity of landing time (EP4) is taken as important parameters to evaluate the landing 

quality of UAV. Here alternative parameters are LQ1, LQ2, LQ3, LQ4, LQ5, LQ6, LQ7, LQ8 and LQ9. 

 

 
FIGURE 1. Performance ratings  

 

The landing performance of UAVs is represented graphically in this figure 1. Here alternative parameters are LQ1, LQ2, 

LQ3, LQ4, LQ5, LQ6, LQ7, LQ8 and LQ9. Here pitch angle (EP1), normal acceleration (EP2), distance to fly (EP3) and 

ground velocity of landing time (EP4) is taken as important parameters to evaluate the landing quality of UAV. 

 

TABLE 2. Normalized Data 

-0.01436 0.00579 -0.00136 0.00365 

-0.06771 0.00701 -0.00223 0.00436 

0.099721 0.0061 -0.00283 0.0042 

0.088088 0.0061 -0.00106 0.00414 

0.127962 0.00671 -0.0046 0.0039 

0.081999 0.00762 -0.00293 0.00359 

0.053751 0.00792 -0.0065 0.00366 

0.13682 0.00518 2.45E-06 0.00414 

-0.00236 0.00671 -0.01311 0.00436 
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The normalized matrix of the landing performance of UAVs is displayed in Table 2 above. This matrix was produced using 

equation three. 

TABLE 3. Weight 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

 

The preferred weight for the evaluation parameters is shown in Table 3. In this case, weights are equally distributed among 

pitch angle, normal acceleration, distance to fly and ground velocity of landing time. The sum of weights distributed equals 

one. 

TABLE 4. Weighted normalized decision matrix 

-0.0036 0.0014 -0.0003 0.0009 

-0.0169 0.0018 -0.0006 0.0011 

0.02493 0.0015 -0.0007 0.001 

0.02202 0.0015 -0.0003 0.001 

0.03199 0.0017 -0.0011 0.001 

0.0205 0.0019 -0.0007 0.0009 

0.01344 0.002 -0.0016 0.0009 

0.0342 0.0013 6.1E-07 0.001 

-0.0006 0.0017 -0.0033 0.0011 

 
Table 4 shows the weighted normalized matrix of the decision matrix and it is calculated by table 2 and table 3 using 

equation 4. 

TABLE 5. Positive Matrix 

0.0342 0.002 6.1E-07 0.0011 

0.0342 0.002 6.1E-07 0.0011 

0.0342 0.002 6.1E-07 0.0011 

0.0342 0.002 6.1E-07 0.0011 

0.0342 0.002 6.1E-07 0.0011 

0.0342 0.002 6.1E-07 0.0011 

0.0342 0.002 6.1E-07 0.0011 

0.0342 0.002 6.1E-07 0.0011 

0.0342 0.002 -0.0033 0.0011 

 
Table 5 shows the positive matrix calculated by using table 4. The ideal best for a column is the maximum value of that 

column in table 4. 

TABLE 6. Negative matrix 

-0.0169 0.0013 -0.0033 0.0009 

-0.0169 0.0013 -0.0033 0.0009 

-0.0169 0.0013 -0.0033 0.0009 

-0.0169 0.0013 -0.0033 0.0009 

-0.0169 0.0013 -0.0033 0.0009 

-0.0169 0.0013 -0.0033 0.0009 

-0.0169 0.0013 -0.0033 0.0009 

-0.0169 0.0013 -0.0033 0.0009 

-0.0169 0.0013 -0.0033 0.0009 

 
Table 6 shows the negative matrix calculated by using table 4. The Ideal best for a column is the minimum value in that 

column in table 4. 
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TABLE 7. SI Plus and Si negative 

  SI Plus Si Negative 

LQ1 0.0378 0.013658 

LQ2 0.0511 0.002766 

LQ3 0.0093 0.041938 

LQ4 0.0122 0.039067 

LQ5 0.0025 0.048967 

LQ6 0.0137 0.037519 

LQ7 0.0208 0.030419 

LQ8 0.0007 0.051238 

LQ9 0.0348 0.016344 

 

Table 7 shows the Si plus and Si negative values. difference of each response from the ideal best (𝑆𝑖
+) is calculated using 

equation 5 and the difference between each response from the ideal worst (𝑆𝑖
−) is calculated using equation 6. 

 

 
FIGURE 2. SI Plus and Si negative 

 
Figure 2 illustrates the graphical representation of the Si plus and Si negative values. difference of each response from the 

ideal best (𝑆𝑖
+) is calculated using equation 5 and the difference between each response from the ideal worst (𝑆𝑖

−) is 

calculated using equation 6. 

TABLE 8. Closeness coefficient 

  Ci 

LQ1 0.2654 

LQ2 0.0513 

LQ3 0.8183 

LQ4 0.7621 

LQ5 0.9511 

LQ6 0.7321 

LQ7 0.5935 

LQ8 0.9868 

LQ9 0.3196 

 

The proximity coefficient values of the alternatives are displayed in Table 8. Equation 7 is employed in the calculation. Here 

Closeness coefficient value for LQ1 is 0.2654, LQ2 is 0.0513, LQ3 is 0.8183, LQ4 is 0.7621, LQ5 is 0.9511, LQ6 is 0.7321, 

LQ7 is 0.5945, LQ8 is 0.9868 and LQ9 is 0.3196. 
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FIGURE 3. Closeness Coefficient (CCi) 

 

Figure 3 illustrates the graphical representation of CCi. It is calculated by using equation 7. Here Closeness coefficient value 

for LQ1 is 0.2654, LQ2 is 0.0513, LQ3 is 0.8183, LQ4 is 0.7621, LQ5 is 0.9511, LQ6 is 0.7321, LQ7 is 0.5945, LQ8 is 

0.9868 and LQ9 is 0.3196. 

TABLE 9. Rank 

  Rank 

LQ1 8 

LQ2 9 

LQ3 3 

LQ4 4 

LQ5 2 

LQ6 5 

LQ7 6 

LQ8 1 

LQ9 7 

 

Table 9 shows the rank of landing performance of UAVs. Here ranking of alternatives: LQ1 is ranked eight, LQ2 is the ninth 

rank, LQ3 is third-ranked, LQ4 is ranked fourth, LQ5 is second-ranked, LQ6 is ranked fifth, LQ7 is ranked sixth, LQ8 is 

ranked first and LQ9 is seventh-ranked. 

 

 
FIGURE 4. Rank 
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Figure 4 illustrates the ranking of Ui from Table 9. Here rank of alternatives using the TOPSIS method for LQ1 is ranked 

eighth, LQ2 is the ninth rank, LQ3 is third-ranked, LQ4 is ranked fourth, LQ5 is second-ranked, LQ6 is ranked fifth, LQ7 is 

ranked sixth, LQ8 is rank first and LQ9 is seventh-ranked. The result of the landing performance of the unmanned aerial 

vehicle by using TOPSIS is eight landings is best followed by the fifth and third. 
 

Conclusion 
Due to their cheaper cost, greater flexibility, and ease of mobility, unmanned systems have recently seen widespread 

development. These systems have enormous potential for use in detection, territorial defence, rescue missions, and 

surveillance, among other things. Unmanned aerial vehicles (UAVs) have become more crucial in disaster relief, naval 

strikes, and other operations as a representative unmanned system.The hazard of the landing phase is demonstrated by the 

high incidence of aviation accidents. The flight condition (speed, altitude, course, etc.), the shape of the aircraft, and the state 

of the engines all significantly alter during the landing phase, which makes landing mishaps more likely. Additionally, fixed-

wing UAVs are more likely to have landing mishaps than unmanned helicopters and multi-rotor UAVs. The unmanned 

helicopter and multi-rotor UAV's vertical take-off and landing are the cause.UAV landing quality represents how well or 

poorly the UAV performed the landing operation. A smooth, safe landing and complete stop are possible for UAVs with 

good landing quality; in contrast, low landing quality can result in a runway overrun, heavy landing, and other risky 

situations for UAVs. In this paper, the TOPSIS method is used to optimize the landing quality of the unmanned aerial 

vehicle. The result of the landing performance of the unmanned aerial vehicle by using TOPSIS is eight landings is best 

followed by the fifth and third. 
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