
 DOI: https://doi.org/10.46632/daai/2/1/1

Copyright@ 2022 REST Publisher 1

Data Analytics and Artificial Intelligence

Vol: 2(1), 2022

REST Publisher; ISBN: 978-81-948459-4-2

Website: http://restpublisher.com/book-series/data-analytics-and-artificial-intelligence/

A Study On Software Engineering Defect Prediction
 *V S. Prasad, K. Sasikala

Department of Computer Science and Engineering, Vinayaka Mission’s Kirupananda Variyar Engineering College,

(Vinayaka Mission Research Foundation (Deemed to be University)), Salem.
*Corresponding author Email: prasadvs_83@yahoo.com

Abstract. The success of any software system entirely depends on the accuracy of the results of the system and

whether it is without any flaws. Software defect prediction problems have an extremely beneficial research potential.

Software defects are the major issue in any software industry. Software defects not only reduce the software quality,
increase costing but it also suspends the development schedule. Software bugs lead to inaccurate and discrepant results.

As an outcome of this, the software projects run late, are cancelled or become unreliable after deployment. Quality and

reliability are the major challenges faced in a secure software development process. There are major software cost

overruns when a software product with bugs in its various components is deployed at client s side. The software

warehouse is commonly used as record keeping repository which is mostly required while adding new features or
fixing bugs. Many data mining techniques and dataset repository are available to predict the software defects. Bug

prediction technique is an important part in software engineering area for last one decade. Software bugs which detect

at early stage are simple and inexpensive for rectifying the software. Software quality can be enhanced by using the bug

prediction techniques and the software bug can be reduced if applied accurately. Dependent and independent variable

are considered in Software bug prediction. To prevent defect based on software metrics software prediction model are
used. Metrics based classification categorize component as defective and non-defective.

1. Introduction

 The success of any software system is entirely depend on the accuracy of the results of the system and whether it is

without any flaws, software defect predict ion problems have an extremely beneficial research potential. Caper, investigated

the software bugs or defects have rendered major contributions towards technical exp lanations for software project failure.

Mining of software repositories have several research challenges to be addressed. New software bug prediction models need

to be designed, effective software defect metrics need to be synthesized and provided them as inputs to various data mining

techniques for extract ing classified informat ion in order to envisage the software faults in new software versions and also

more developed methods are needed to reduce software cost overruns. The software metrics lie at the core of bug prediction

models. The main object ive of any organization is to have defect free software. In fact, earlier detection of defect would save

time and cost of the system. The above statement clearly describes that we need to identify the finest machine learning model

for software defect prediction for which various performance parameters are available, such as, accuracy, mean square error,

and correlation and R-Squared to compare with other diverse models. Data is an important part of the system. One of the

biggest challenges is to acquire the right dataset and where in to categorize the dependent and independent variables. The

more the data, the more complex will the system become and more probability of the defect appearing. Hence, it is always

safer to remove the insignificant variab les from the datas et and reduce the independent variable using the feature selection

technique. The insignificant variables have a negligible impact to detect the software bug. There are various types of feature

selection techniques that are available to derive the significant and insignificant variab les from the dataset. For the research,

the Wrapper and Filter method used in Feature Selection technique are taken to find the imperative variable from the publicly

available Promise Repository. Data Mining Data mining addresses all the techniques and processes involved in discovering

interesting patterns that are hidden inside large data sets, which help in decision making process. Data mining is not only

applicable to marketing data, d rug designing and weather forecasting, but also has been used by the software development

industries to manage their software development processes. Data Mining Techniques Data mining techniques, such as,

clustering, classification, association rules and various statistical techniques are involved to extract actionable in formation

from huge data sets. A large number of data mining practices have been developed for bug detection, prediction and

prevention. To accomplish the data mining task various software tools are available to analyze enormous quantities of data

and apply diverse data mining techniques Stored software engineering data contains adequate informat ion in terms of project

status, progress, and evolution. This data supports various characteristics of software development within the in dustrial

software development process. Using firm and well known data mining techniques, researchers and specialists have started

exploring their precious data in order to manage their projects in an improved and professional manner and produce high

quality software systems. The early stage of software defect d iscovery allows managers to make appropriate decisions and

plan limited project resources in a more structured and systematic manner

 Prasad.et.al / Data Analytics and Artificial Intelligence 2(1) 2022, 01-06

Copyright@ REST Publisher 2

2. Significance of Study

 Software development is facing enormous challenges in quality and reliability. There are major software cost overruns

when a software product with bugs in its various components is deployed at client side. A software bug is an inaccuracy,

defect, botch up, or a error in a computer program or system that triggers it to generate an improper or unanticipated result , or

to perform in an unintentional manner. As a result, s oftware projects will be delayed cancelled or become unreliable after

deployment. There are varied social and technical issues that are related to software failures. Social issues such as forcing

project to adhere to schedules or handling o f the software p ro ject by inexperienced professionals are common in software

industries. A total absence of contemporary approximat ing techniques and the failure in p lanning for requirements growth

during the development stage is amongst the technical issues that contribu te to the failure of the project. “Cost per defect” is

harmful for the software quality. The cost-prefect-metric- is used to scrutinize the monetary assessment of the software

quality. The financial significance of software quality is dependent on two major 9 factors:

1) Reduction in defect repair costs;

2) Reduction in development and maintenance costs. The first of these factors is managed in an inaccurate fashion by the

cost-per-defect metric. A serious economic analysis of the software quality needs additional metrics besides cost per defect

and better measurement methods as well Successful software quality control involves defect prevention, defect removal, and

defect measurement activities. Defect prevention includes all activ ities that minimize the probability of creating an error or

defect in the first place. The gauging of defect consists of various matrices of malfunctions detected during the development

phase and includes the shortcomings that are pointed out by the customer after its release . The removal of defects takes care

of all the activities that detect and eliminate flaws and mistakes in any type of deliverable product. Software metrics for

example, product metrics and process metrics are at the core of bug prediction models. Object ives of The Study to select

statistical learning and data mining techniques to be applied on historical software data for prediction of software defect.

3. Literature Review

Prasad, Florence and Arya (2015) in their study has depicted that Software quality is a field of study and practice that

describes the desirable attributes of software products. Software quality metrics are a subset of software metrics that focus on

the quality aspects of the product, process, and project. The software defect prediction model helps in early detection of

defects and contributes to their efficient removal and producing a quality software system based on several metrics. The main

objective of paper was to help developers identify defects based on existing software metrics using data mining techniques

and thereby improve the software quality. In their paper, various classification techniques are revisited which are employed

for software defect prediction using software metrics in the literature. Vashisht, Lal and Suresh chandar (2015) in their

research paper has pointed out the fact that number of approaches has been proposed for effective and accurate pred iction of

software defects, yet most of these have not found widespread applicability. The main objective in this communicat ion is to

provide a framework which is expected to be more effective and acceptable for predicting the defects in multip le phases

across software development lifecycle. The proposed framework is based on the use of neural networks fo r predict ing defects

in software development life cycle. Further, in o rder to facilitate the easy use of the framework by project managers, a

software graphical user interface has been developed that allows input data (including effort and defect) to be fed easily fo r

predicting defects . The proposed framework provides a probabilistic defect pred iction approach where instead of a defin ite

number, a defect range (minimum, maximum, and mean) is predicted. The claim of efficacy and superiority of proposed

framework is established through results of a comparative study, involving the proposed framework and some well -known

models for software defect predict ion. Arvinder Kaur, Kamaldeep Kaur and Chopra (2016) in their research article has

depicted that there are many approaches for predicting bugs in software systems. 22 A popular approach for bug prediction is

using entropy of changes as proposed by Hassan (2009). Their paper uses the metrics derived using entropy of changes to

compare five machine learning techniques, namely Gene Expression Programming (GEP), General Regression Neural

Network, Locally Weighted Regression, Support Vector Regression (SVR) and Least Median Square Regression for

predicting bugs. Four software subsystems: mozilla/ layout/generic, mozilla/layout/forms, apache/httpd/modules/ssl and

apache/httpd/ modules/ mappersare used for the validation purpose. The data extraction for the validation purpose is

automated by developing an algorithm that employs web scraping and regular expressions. The study suggests GEP and SVR

as stable regression techniques for bug pred iction using entropy of changes. Halili, and Rustemi (2016) has pointed out that

with the rapid development of technology, there are various sophisticated software which enable them to solve problems in

various spheres of our life. With the introduction of sophisticated software, there is a need also for new terms where it will be

stored these data because we know that software cannot function if it does not have the most significant part and that is

database. They have introduced the terms Big Data, Data Warehouses, Data Mining and their classificat ion and done analysis

for Regression technique (linear and multiple regression). Regression as technique although is predictive technique, but

based on analyzes conducted to reach the conclusion most scientists, have concluded that the reliab ility percentage is around

95%. Through their paper they have demonstrated this scale of reliab ility through c examples Rong, Li and Cui (2016) in

their art icle has pointed out that software defect prediction is not only crucial for improving software quality, but also helpful

for software test effort estimation. It has been observed that 80% of the fau lt happens in 20% of the modules. Therefore,

there is a need to find out the most error prone modules accurately and correct them in time to save time, money and energy.

There is one method that is Support vector machine (SVM) which is an advanced classificat ion method that fits the defection

classification. However, studies show that, the value of parameters of SVM model has a remarkable influence on its 23

classification accuracy and the selection process lacks theory guidance that makes the SVM model uncertainty and low

 Prasad.et.al / Data Analytics and Artificial Intelligence 2(1) 2022, 01-06

Copyright@ REST Publisher 3

efficiency. In their paper, a CBA-SVM software defect prediction model is p roposed, which take advantage of the nonlinear

computing ability of SVM model and optimization capacity of bat algorithm with centroid strategy (CBA). Through the

experimental comparison with other models, CBA-SVM is proved to have a higher accuracy. Periasamy and Mishbahulhuda

(2017) have mentioned in their paper that Software defect prediction work focuses on the number of defects remaining in a

software system. The software defect predict ion model helps in early detection of defects and contributes to their efficient

removal and producing a quality software system based on several metrics. A pred iction of the number of remaining defects

in an inspected is fact can be used for decision making. An accurate prediction of the number o f defects in a software product

during system testing contributes not only to the management of the system testing process but also to the estimation of the

product’s required maintenance. Defect ive software modules cause software failures, increase development and maintenance

costs, and decrease customer satisfaction. It strives to improve software quality and testing efficiency by constructing

predictive models from code attributes to enable a timely identification of fault -prone modules. The main objective of paper

is to help developers identify defects based on existing software metrics using data min ing techniques and thereby improve

the software quality. In this paper, we will discuss data mining techniques that are association min ing, classification and

clustering for software defect prediction. This helps the developers to detect software defects and correct them.

4. Tools and Techniques

To accomplish the research goal, the data is collected from open software repositories. Data in these repositories provide

us with historic information, which is stored at the time of development of the software and testing of the software products.

The large number of open software repositories, such as, source control repositories, bug repositories, achieved

communicat ion repositories, deployment logs and code repositories are publically available. The finest part of these

repositories is that they are a treasure house of actual software development and approved for the international software

communit ies for standard researches in software intelligence. Hassan et.al. Mentioned the following table which consists of

information about software development.

5. Data Collection

Data plays a very critical role in any organizat ion and hence the selection of data (or dataset) is an extremely important

component for any software system. The data has to be in a reliable, clean and accurate form to enab le a developer to reach to

some conclusion. The bug predict ion dataset is a group of models and metrics of software system and their h istories. The

dataset is a dynamic component to accomplish bug prediction at the class level, as it uses a number of metrics, which can be

used to create generalized linear regression models and the number of post -release defects. The performance of these models

is evaluated by comparing the prediction results against the actual post -release defects provided as part of the dataset.

6. Data Cleaning

Data Cleaning is supportive in improving the quality of the data as it deals in detecting inconsistencies, removing errors,

missing values. Rahm et.al in their paper addresses the issue of data cleaning, which is a foremost part of 34 extractions,

transformation, loading (ETL) process in a data warehouse. There are a variety of tools available to clean the data, but at

times, a major portion of the data needs to be cleaned manually which are tough to write and maintain. Though various types

of tools are available, yet there is a complexity in a cleaning problem. Feature Select ion in a larger dataset, all the variables

are not so important to consider, the more the number of variables, the complexity will be on the increase. Therefore, it is

always desirable to reduce the variables and should include important variables in a dataset. Through a Feature Selection

technique, we can reduce the variable and locate the importance of the variable in a dataset.

7. Boruta

Boruta is one of the most significant Feature Selection packages to explore the relevant element from a large dataset. It

uses a Wrapper algorithm, which is better than the filter method as in the W rapper Method classifier is used as a black bSox

returning a feature ranking. The R package Boruta is available at http://CRAN.R-project.org/package=Boruta). When the R

package Bouruta is in operation, it displays the entire confirmed variable and the rejected variab le in a dataset. When the box

plot is drawn Green, Blue and Red represent a Z- Scores of confirmed, minimal or average, rejected attribute respectively.

8. Regsubsets

Regsubsets are used for regression subsets selection to come across the model that ideally suits the data by calculat ing its

R2, AIC and BIC values. The model can be ranked according to adjusted R2 criteria and BIC, wh en the graph is being

plotted as shown in Figure 4.2, there are two indicators, black and white. Black indicates that the variable is included in t he

model and white signifies that it is excluded in the model.

 Prasad.et.al / Data Analytics and Artificial Intelligence 2(1) 2022, 01-06

Copyright@ REST Publisher 4

9. Fselector

FSelector is also considered to be one of the important selection functions for selecting the attributes from a dataset. This

function is used to find the irrelevant and redundant attribute as much as possible from a given dataset. F Selector consists of

Feature Selection algorithm, like wrapper and filter. The Wrapper method uses a predictive model and trains a new model for

each subset. The Wrapper Algorithm used in F Selector is best first search, backward search, forward search, hill climbing

search. The Filter Method uses a proxy measure to score a feature sub-set. Filters are usually less computationally intensive

than wrappers. It is generally used as feature ranking. Filter methods have also been applied as a pre -processing step for

wrapper methods. Filter method used in F Selector are CFS, chi squared, information gain, gain ratio, symmetrical

uncertainty, linear correlation, rank correlation, one R, relief, consistency, random forest importance. Other algorithma use d

are cutoff. k, cutoff. k. percent, cutoff. biggest. Diff as. simple. formula. Filter method Random Forest, Information Gain,

Linear Correlation and Rank Correlation were used.

10. Data Analysis

The regression methods, Linear Model, Random Forest, Decision Tree, Support Vector Machine, Neural Netwo rk and

Decision Stump were applied in software modules Ant, Ivy, Tomcat, Berek, Camel, Lucene, POI, Synapse and Velocity with

all the metrics and with only optimal metrics like RFC, LOC and WMC, which was derived from Feature Selection

techniques. Performance Parameters Accuracy, Mean Square Error, R Squared and Correlation were calculated to find the

most optimal machine learning models which are as fo llows: Machine learning models applied combining all the Software

Metrics The machine learn ing models with the tuning parameters as discussed in Table 1 was applied with all the software

metrics WMC, RFC, CBO, LCOM, NOC, DIT, CA, CE, NPM, LCOM3, LOC, DAM, MOA, MFA, CAM, IC, CBM, AMC,

MAX_CC, AVG_CC to obtain the correlation, R-Squared, Mean Square Error and Accuracy as shown in Tab les 2, 4, 4 and

5 below respectively. The graph was plotted to compare the performance parameters by computing the mean average of each

nine software modules with respective.

TABLE 1. Correlation Calculated Combining of All the Software Metrics

Machine

Learning

Model Ant Ivy Tomcat Berek Camel Lucene Synapse Velocity

Linear Model 0.69 0.39 0.45 0.51 0.05 0.37 0.14 0.19

Random Forest 0.64 0.56 0.43 0.73 0.16 0.48 0.25 0.25

Neural

Network 0.24 0.47 0.47 0.1 0.01 0.43 0.01 0.35

Decision Tree 0.53 0.12 0.47 0.65 0.03 0.35 0.14 0.5

SVM 0.47 0.38 0.1 0.87 0.07 0.45 0.16 0.09

Decision

Stump 0.49 0.5 0.23 0.71 0 0 0.12 0

The Correlation Comparative Analysis was done of the machine learning model using all the software metrics. Figure 5.26

depicted that Random Forest has the highest correlation at 0.44 and Neural Network and Decision Stump have lowest

correlation at 0.29 using all the software metrics.

TABLE 2. R Squared Calculated Combining All the Software Metrics

Machine Learning

Model Ant Ivy Tomcat Berek Camel Lucene Synapse Velocity

Linear Model 0.48 0.14 0.23 0.26 0.05 0.37 0.32 0.25

Random Forest 0.41 0.31 0.18 0.53 0.16 0.48 0.23 0.24

Neural Network 0.06 0.23 0.23 0.01 0.01 0.432 0.36 0.16

Decision Tree 0.3 0.02 0.01 0.43 0.4 0.32 0.04 0.18

SVM 0.22 0.14 0.3 0.45 0.07 0.33 0.14 0.5

Decision Stump 0.23 0.45 0.13 0.45 0.43 0.322 0.16 0.09

The R-Squared Comparative Analysis was done of the machine learn ing model using all the software metrics. The Figure

5.27 depicted that the Random Forest has highest R-Squared value as 0.33 and Neural Network has the lowest R Squared

values as 0.18.

 Prasad.et.al / Data Analytics and Artificial Intelligence 2(1) 2022, 01-06

Copyright@ REST Publisher 5

TABLE 3. Mean Square Error Calculated Combining All the Software Metrics

Machine

Learning

Model Ant Ivy Tomcat Berek Camel Lucene Synapse Velocity

Linear Model 0.23 2.26 0.34 0.35 1.56 0.06 1.99 0.63

Random

Forest 0.5 0.22 0.19 1.44 0.78 1.4 0.77 0.53

Neural

Network 2.24 0.35 1.76 2.11 0.87 1.34 1.85 3.22

Decision Tree 0.51 0.17 0.13 1.24 0.55 .1.65 0.77 1.33

SVM 0.43 0.14 0.27 1.33 0.67 1.65 0.77 0.96

Decision

Stump 0.55 0.24 0.23 1.65 0.67 1.88 0.99 1.02

The Mean Square Error comparat ive analysis was done of the machine learning model using all the software metrics. Figure

5.28 depicted that the Random Forest and Support Vector Machine has the lowest mean square value as 0.74 and the Neural

Network has the highest Mean Square Error as 1.7.

Table 4. Accuracy calculated combining all the software metrics

Machine
Learning

Model Ant Ivy Tomcat Berek Camel Lucene Synapse Velocity

Linear Model 87.45 94.33 96.54 65.46 45.34 75.99 85.45 73.33

Random

Forest 87.44 94.33 34.35 76.65 48.66 54.45 76.87 72.21

Neural

Network 34.34 97 34.56 40.54 77.54 45.67 41.34 77.6

Decision Tree 87.65 97.65 95.44 87.43 56.44 80.54 65.76 65.87

SVM 97.65 97.55 97.45 73.33 88.55 55.46 81.43 76.45

Decision

Stump 87.65 96.45 94.33 77.33 98.33 80.43 83.23 84.34

The Accuracy Comparative Analysis was done of the Machine Learning Model using all the software metrics. Figure 5.29

depicted that the Support Vector machine has the highest value as 83.04 and the Neural Network h as the lowest accuracy as

53.13

11. Conclusion

 The objective of the software bug prediction is tracing of bug constituents in software well before software testing. The

bug prediction techniques were applied in all the software modules of CK and OO metrics. Bug prediction results in

decreased cost of development costs, time, increased customer satisfaction and more reliable software. Therefore, bug

prediction techniques are considered significant in order to accomplish important to achieve optimum quality of and refrain

from repeating past mistakes. The dataset used in this paper is from the Promise Repository, which is well -recognized and a

publicly accepted repository. The experiment was conducted using software modules, such as Ant, Ivy, Tomcat, Berek,

Camel, Lucene, POI, Synapse and Velocity using Feature selection techniques: Boruta, regsubsets and FSelector (Random

Forest, Informat ion Gain, Linear Correlat ion, and Rank Correlation).The objective of the Research was achieved by locating

the optimal software metrics, optimal machine learn ing models and preventive measures that can be used to prevent defects

in future software version releases Measures To Prevent Defect In Soft ware Release The earlier the defect is detected, the

cost involved is reduced and the resources are fully utilized. Moreover, it becomes much easier to rect ify the defect during

the initial stage. Complexity metrics are better predictors of fault potential in co mparison to other well-known historical

predictors of faults, i.e. prior modifications and prior fau lts. iii. Self-review the code has a major contribution in preventing

the software defect. Proper Defect Tracking system needs to be implemented. Files that have anti-patterns tend to have a

higher density of bugs than others as anti-patterns can increase the bugs in the future. Anti-patterns can be removed from

systems using refactoring.

 References

[1]. H. So lanki, “Comparat ive Study of Data Min ing Tools and Analysis with Unified Data Mining Theory,”

International Journal of Computer Applications, vol. 75, no. 16, pp. 23–28, 2013.

[2]. E. Hassan and Tao, Xie, “Min ing software engineering data”, in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - Volume 2 (ICSE '10), Vol. 2. ACM, New York, NY, USA,

2010. pp. 503-504.

 Prasad.et.al / Data Analytics and Artificial Intelligence 2(1) 2022, 01-06

Copyright@ REST Publisher 6

[3]. M. S. Rawat, and S. K. Dubey, "Software defect prediction models for quality improvement: A literat ure study."

IJCSI International Journal of Computer Science Issues Vol.9 No. 5,pp. 295, 2012.

[4]. M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard to defect prediction,”

Proc. 6th Int. Conf. Predict. Model. Softw. Eng. - PROMISE ’10, pp 1-10, 2010.

[5]. Y. Suresh, J. Pati, and S. K. Rath, “Effectiveness of software metrics for object -oriented system,” Procedia

Technologyvol. 6, pp. 420–427, 2012.

[6]. M. S. Rawat, and S. K. Dubey, "Software defect prediction models for quality improvement: A literature study."

IJCSI International Journal of Computer Science Issues Vol.9 No. 5,pp. 289, 2012.

[7]. M. S. Rawat, and S. K. Dubey, "Software defect prediction models for quality improvement: A literature study."

IJCSI International Journal of Computer Science Issues Vol.9 No. 5,pp. 292, 2012

[8]. S. Kim, H. Zhang, R. Wuand L. Gong. “Dealing with noise in defect prediction “in Proceedings of the 33rd

International Conference on Software Engineering (ICSE '11). ACM, New York, NY, USA, 2011. pp. 481-490.

[9]. M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data Quality: Some Comments on the NASA Software Defect

Datasets,” IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1208–1215, 2013.

[10]. M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard to defect prediction,”

Proc. 6th Int. Conf. Predict. Model. Softw. Eng. - PROMISE ’10, pp 2-4, 2010.

[11]. R. Goyal, P. Chandra, and Y. Singh, “Identifying influential metrics in the combined metrics approach of fault

prediction,” Springerplus, vol. 2, no. 1, pp. 1–8, 2013.

[12]. R. Subramanyam and M. Krishnan, “Empirical analysis of CK metrics for object -oriented design complexity:

implications for software defects,” IEEE Transactions on Software Engineering, vol. 29, no. 4, pp. 297–310,

2003.

[13]. F. Provost and R. O. N. Kohavi, “Guest Ed itors’ Introduction: On Applied Research in Machine Learn ing,” New

York, vol. 132, no. 1998, pp. 127–132, 1998.

[14]. Pradesh and A. Pradesh, “The Importance of Statistical Tools in Research Work,” Int. J. Sci. In nov. Math. Res.,

vol. 3, no. 12, pp. 50–58, 2015.

[15]. T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and C. Weiss, “What makes a good bug

report?,” IEEE Trans. Softw. Eng., vol. 36, pp. 618–643, 2010.

[16]. H. Wang, “Software Defects Classification Prediction Based On Min ing Software Repository,” Dissertation,

2014.

[17]. M. Jureczko. “Significance of different software metrics in defect prediction,” Softw. Eng. An Int. J., vol. 1, no.

1, pp. 86–95, 2011.

[18]. T.N. Zimmermann, N. Nagappan, and Zeller, A. “Pred icting bugs from history software evolution”. Springer

Berlin Heidelberg, pp 69-88, 2008

