

 Kiruthika.et.al / REST Journal on Emerging trends in Modelling and Manufacturing, 9(2), June 2023: 23-28

Copyright@2023 REST Publisher 23

REST Journal on Emerging trends in Modelling

and Manufacturing

Vol: 9(2), June 2023

REST Publisher; ISSN: 2455-4537 (Online)

Website: https://restpublisher.com/journals/jemm/

DOI: https://doi.org/10.46632/jemm/9/2/4

Desktop Based Personal Assistance Using Python

Programming Language
*Ms. S. S. Kiruthika, Bhushan Kekane, Animesh Sarma, Ritul Mishra

SRM Institute of Science and Technology, Chennai, India.

*Corresponding Author Email: kiruthis3@srmist.edu.in

Abstract: Chat bots, conversational interfaces, and personal assistants all reimagine how people engage

with computers. A virtual personal assistant allows users to ask questions in the same way they would talk

to a person, and some basic actions, like opening apps, reading news, taking notes, etc., may be performed

with just a voice command. Personal assistants like Google Assistant, Alexa, and Siri operate using text-

to-speech and speech recognition. For instance, those who are unable to walk utilize the Internet of Things

function to operate and maintain household items. So, we created a voice assistant that help users in

carrying out day to day task with help of internet. Also, it does certain activities when the internet is absent.

So, a voice assistant that will be practical for users and comparable to other voice assistants that are now

popular has been created.

Keywords: Artificial Intelligence (AI), NLP, Pre-processing Python, Voice assistant.

1. INTRODUCTION

Our lives now wouldn't be the same without personal helpers. It's because of all the features and user-friendliness

they offer. A user can concentrate on what is most important to them by using a personal assistant to automate

some of their daily duties. Personal assistants include functions such as making calls, sending messages, taking

pictures, maintaining to-do lists when travelling, and internet browsing, among others. Therefore, using these

qualities of a virtual assistant will enable someone to save a lot of time and effort. Whether it's personal or

professional employment, it's critical to concentrate more on what matters most to a particular person. These kinds

of personal assistants can automate mundane tasks that people frequently spend more time on. When working in

an unfamiliar setting, people frequently struggle to discover the software they require, such as a browser, an IDE,

or any other application. Most of the time, people will waste hours looking for the application. This wastes time

that could be used elsewhere. A personal assistant will therefore aid in automating this process. The user is only

required to issue a verbal command; the assistant will do the rest. By stating its name, "Dora," the virtual assistant

can be called to life and will respond with a greeting appropriate to the time of day. The user's name is also

requested by the assistant, which utilizes it in the welcome message. The user's commands are changed to lower

case for the program's main loop to more easily recognize them. The assistant can carry out a variety of tasks,

including looking up information on Wikipedia, launching Google, YouTube, and Stack Overflow websites,

playing music from a local music directory, displaying the clock, sending emails, and starting programs like

Opera. The code is a simple virtual assistant implementation overall, but it may be expanded to carry out more

complex functions and work with other APIs and libraries.

2. DOMAIN INTRODUCTION

Artificial intelligence (AI) is the study of how to make computer systems capable of doing things like sensing,

reasoning, learning, and decision-making that would typically need human intelligence. A subfield of computer

science known as artificial intelligence (AI) focuses on creating algorithms and computational models that allow

machines to learn from and communicate with their surroundings in a manner akin to that of a human being. A

few strategies for developing AI systems are machine learning, deep learning, natural language processing, and

 Kiruthika.et.al / REST Journal on Emerging trends in Modelling and Manufacturing, 9(2), June 2023: 23-28

Copyright@2023 REST Publisher 24

computer vision. Large amounts of data are used to train machine learning algorithms to detect patterns and make

predictions. Deep learning, a subset of machine learning, trains neural networks with numerous layers of linked

nodes. Natural language processing includes training computers to grasp and generate human language, whereas

computer vision entails teaching machines to recognise and comprehend visual input. Healthcare, finance,

transportation, and manufacturing are just a few of the sectors and applications that AI has the potential to

revolutionize. It can be used to automate boring or repetitive operations, find trends and insights in vast amounts

of data, and support decision-making. The ethical ramifications of AI, however, are also a source of concern due

to factors including the possibility of biases being built into algorithms, the effect on employment, and the use of

AI for surveillance or other negative objectives.

 3. LITERATURE SURVEY

1. This research article suggests a voice- and gesture-based virtual assistant that both people with and

without disabilities can employ to carry out routine computer operations. The major objective is to create

natural human-machine contact, and the suggested solution is practical throughout the day. It can be quite

useful during situations like the Covid-19 pandemic.

2. This paper talks about a virtual assistant in Bangla called Adrisya Sahayak (Invisible Helper) which was

created to aid people with vision impairments in using computers, peripherals, and household appliances.

It is user-independent and uses human voice instructions in Bangla to carry out activities within.

3. This study suggests a conversational agent system to offer continuous and immediate support to colleges.

Conversational agents are natural language interaction interfaces designed to replicate human

interactions using AI.

4. This project thesis examines the use of emerging technologies to create an intelligent Virtual Desktop

Assistant with a user-based data focus. Natural language processing is employed to activate social

communication skills and store data in the user's context.

5. The major task of a voice assistant prototype is to minimize the need of input devices to save hardware

cost and space required. Voice assistants have been created and upgraded for greater performance and

efficiency.

4. EXISTING SYSTEM

There are several existing systems for Python-based virtual assistants. Here are a few examples:

1. Jarvis AI is a Python-based open-source virtual assistant that can open webpages, play music, create

reminders, and other functions. It is made to be adaptable and simple to use.

2. Another open-source virtual assistant built on Python is called Mycroft AI. It interprets user requests

using natural language processing and provides an answer. It can do several things, including sending

messages, creating reminders, and managing smart home appliances.

3. Rasa is an open-source, Python-based conversational AI platform. It is made to help developers create

chatbots and virtual assistants that can converse with people in natural language. For several platforms,

including Slack, Facebook Messenger, and others, it can be used to create virtual assistants.

4. The Python module ChatterBot can be used to create chatbots and virtual assistants. It generates

responses to user inputs using machine learning techniques. It can be incorporated into many platforms,

including websites and chat applications.

 5. PROPOSED SYSTEM

The suggested system will be created to carry out a variety of duties, such as creating reminders, sending emails,

delivering weather updates, arranging appointments, playing music, and more. Advanced NLP and ML techniques

will be used by the virtual assistant to thoroughly comprehend and address user queries. As a result, the virtual

assistant's precision and dependability will eventually increase. Over time, the virtual assistant will be able to pick

up on the user's tastes and behaviors and adjust, giving them a more tailored experience. To give more pertinent

and useful responses, it will be able to recognize and remember prior interactions and requests. The virtual

assistant will be made to work with a range of technology, including wearables, smartphones, and smart home

appliances. By doing this, consumers would be able to operate their gadgets using voice commands and a virtual

assistant. By putting security and privacy first, the suggested system would use encryption, secure authentication,

and data protection mechanisms to guarantee that user information is kept private and secure.

 Kiruthika.et.al / REST Journal on Emerging trends in Modelling and Manufacturing, 9(2), June 2023: 23-28

Copyright@2023 REST Publisher 25

 6. ADVANTAGES OF PROPOSED SYSTEM

The proposed system of a desktop-based personal assistant using Python programming language has several

advantages over existing systems: No internet connection required: Unlike most existing personal assistants, the

proposed system does not require an internet connection to function. This means that users can access the

assistant's functionality even when they are offline, providing greater flexibility and convenience. Customizable:

The system can be customized to meet the specific needs and preferences of individual users. Users can define

their own commands, create personalized workflows, and add or remove functionality as desired. Improved

accuracy: By using deep learning models for feature extraction and natural language processing, the proposed

system can achieve higher levels of accuracy and effectiveness in understanding user input and providing

appropriate responses. Privacy and security: Because the system does not rely on cloud-based services, it offers

greater privacy and security for users who are concerned about the collection and use of their personal data. Open

source: The system is built using open-source technologies, which means that users can access and modify the

source code to suit their needs. This promotes greater transparency and collaboration in the development of

personal assistant technologies. Offline access to information: Since the system does not rely on an internet

connection, it can provide offline access to information such as the user's calendar, to-do list, and contact list. This

can be particularly useful in situations where the user does not have access to an internet connection. Platform

independence: The system can be run on any desktop platform that supports Python, such as Windows, macOS,

and Linux. This makes it accessible to a wider range of users who may be using different operating systems. Cost-

effective: The use of open-source technologies and the lack of a reliance on cloud-based services can make the

proposed system more cost-effective than some existing personal assistants that require expensive subscriptions

and ongoing fees. Improved workflow: By providing a central hub for managing tasks, schedules, and other

information, the proposed system can help to improve the user's workflow and productivity. Easy to use: With a

user-friendly interface and natural language processing capabilities, the proposed system can be easy to use for

people of all skill levels. This can help to increase the adoption of personal assistant technologies by a wider range

of users.

Module

FIGURE 1. Block Diagram

Voice Input: Voice input refers to the process of capturing spoken words and sounds using a microphone or other

audio input device. In the context of a desktop-based personal assistant system using Python, voice input is

typically the primary mode of interaction between the user and the system. Here are the main steps involved in

voice input: Audio capture: The first step is to capture the user's voice input using a microphone or other audio

input device. This can be done using the operating system's built-in audio input settings or a Python library such

as PyAudio. Pre-processing: The captured audio may contain noise, echoes, or other interference that can affect

the accuracy of the speech recognition. Preprocessing techniques, such as filtering, noise reduction, and

normalization, can be used to improve the quality of the audio. Speech recognition: The captured audio is then

passed through a speech recognition system, which uses algorithms and machine learning models to convert the

spoken words into text. Text analysis: The resulting text is then analyzed by the system to identify the user's intent

and extract relevant information, such as keywords, entities, and context. Response generation: Based on the text

analysis, the system generates a response, which can be in the form of spoken words, text, or other output. Voice

input is a key component of many personal assistant systems, such as Apple's Siri, Amazon's Alexa, and Google

Assistant. In recent years, advances in speech recognition and natural language processing technologies have

made it possible for these systems to accurately recognize and respond to user input in a more natural and intuitive

way.

 Kiruthika.et.al / REST Journal on Emerging trends in Modelling and Manufacturing, 9(2), June 2023: 23-28

Copyright@2023 REST Publisher 26

Pre-processing: In the context of a desktop-based personal assistant system using Python, preprocessing refers

to the set of techniques used to prepare and clean up the raw data, in this case the user's voice input, before it is

analyzed by the system. Here are some common preprocessing techniques used in speech processing: Signal

filtering: This involves removing any noise or unwanted frequencies from the audio signal. Common filtering

techniques include high-pass, low-pass, and band-pass filters. Noise reduction: This technique involves removing

background noise and interference from the audio signal. Common noise reduction techniques include spectral

subtraction, Wiener filtering, and signal thresholding. Normalization: This technique involves adjusting the

amplitude or volume of the audio signal to a standard level. This can be done by scaling the signal to a fixed

maximum amplitude or by adjusting the gain. Resampling: This involves changing the sampling rate of the audio

signal, which can be useful in cases where the input device has a different sampling rate than the processing

system. Feature extraction: This involves identifying and extracting relevant features from the audio signal, such

as pitch, formants, and spectral characteristics. These features can then be used as input to the speech recognition

system. Preprocessing is an important step in speech processing, as it can significantly improve the accuracy and

quality of the speech recognition output. There are several Python libraries that can be used for speech

preprocessing, including PyAudio, SciPy, and Librosa.

Feature Extraction: In the context of a desktop-based personal assistant system using Python, feature extraction

refers to the process of identifying and extracting relevant features from the preprocessed audio signal, in order

to provide input to the speech recognition system. The goal of feature extraction is to represent the audio signal

in a more compact and meaningful way, by identifying the key characteristics that are relevant for speech

recognition. Here are some common techniques used for feature extraction in speech processing:

1. Mel-frequency cepstral coefficients (MFCCs): This is a widely used technique for speech feature

extraction, which involves applying a filter bank to the preprocessed audio signal and then computing

the logarithm of the resulting power spectra. The resulting features are then transformed using a discrete

cosine transform (DCT) to obtain the MFCCs.

2. Linear predictive coding (LPC): This is another technique for speech feature extraction, which involves

modeling the speech signal as a linear combination of past and present speech samples. The resulting

LPC coefficients can be used as input to the speech recognition system.

3. Perceptual linear prediction (PLP): This is a variant of LPC that takes into account the non-linear

properties of the human auditory system. PLP coefficients can provide a better representation of the

speech signal in noisy environments.

4. Pitch estimation: This involves estimating the fundamental frequency of the speech signal, which can be

a useful feature for speech recognition. Pitch estimation can be done using techniques such as

autocorrelation, harmonic product spectrum, or the YIN algorithm.

5. Spectral features: This involves extracting spectral characteristics of the speech signal, such as formants,

spectral peaks, and spectral moments. These features can be useful for discriminating between different

phonemes and words.

Feature extraction is an important step in speech processing, as it can significantly improve the accuracy and

efficiency of the speech recognition system. There are several Python libraries that can be used for speech feature

extraction, including Librosa, SciPy, and Python_speech_features.

Voice to Text Conversion: In the context of a desktop-based personal assistant system using Python, voice-to-

text conversion refers to the process of transcribing the preprocessed and feature-extracted audio signal into text

that can be used as input for further processing. Here are some common techniques used for voice-to-text

conversion in speech processing:

1. Hidden Markov Models (HMMs): This is a widely used technique for speech recognition, which involves

modeling the relationship between the audio signal and the corresponding text using a statistical model

based on Markov chains. HMMs can be trained on a large corpus of speech data to recognize different

words and phrases.

2. Deep neural networks (DNNs): This is another technique for speech recognition, which involves training

a neural network to recognize the features extracted from the preprocessed audio signal. DNNs have been

shown to achieve state-of-the-art performance in speech recognition tasks.

3. Convolutional neural networks (CNNs): This is a variant of DNNs that is particularly suited for

processing time-series data, such as audio signals. CNNs can be used to extract features directly from the

raw audio signal, which can improve the accuracy of the speech recognition system.

4. Recurrent neural networks (RNNs): This is another variant of DNNs that is particularly suited for

processing sequential data. RNNs can be used to model the temporal dependencies in the audio signal,

which can improve the accuracy of the speech recognition system.

5. Speech recognition libraries: There are several Python libraries that provide pre-trained models for voice-

 Kiruthika.et.al / REST Journal on Emerging trends in Modelling and Manufacturing, 9(2), June 2023: 23-28

Copyright@2023 REST Publisher 27

to-text conversion, such as Google Speech Recognition, CMU Sphinx, and Kaldi. These libraries can be

used to quickly integrate speech recognition into a desktop-based personal assistant system.

Voice-to-text conversion is a crucial step in a desktop-based personal assistant system, as it allows the system to

understand and process the user's voice input. There are several Python libraries and techniques that can be used

for voice-to-text conversion, depending on the specific requirements of the system.

Content Extraction: In the context of a desktop-based personal assistant system using Python, content extraction

refers to the process of extracting relevant information from text input, such as user queries or web pages. The

goal of content extraction is to identify and extract the key pieces of information that are relevant to the user's

query or task. Here are some common techniques used for content extraction in text processing:

1. Named entity recognition (NER): This is a technique for identifying and extracting named entities, such

as people, organizations, and locations, from text. NER can be used to extract information such as names,

dates, and locations from user queries or web pages.

2. Part-of-speech (POS) tagging: This is a method for recognising and labelling sentence components of

speech such as nouns, verbs, and adjectives. The important concepts and themes in a user query or web

page can be identified via POS tagging.

3. Dependency parsing: This is a way for evaluating the grammatical structure of a phrase and discovering

the relationships between distinct elements. Dependency parsing can help you understand what the user

is saying by determining the subject, object, and verb of a sentence.

4. Sentiment analysis: This is a strategy for determining if a piece of literature has a good, negative, or

neutral emotional tone. Sentiment analysis may be used to determine a user's emotional state or opinion

on a specific issue.

5. Text summarization: This is a technique for generating a summary of a longer piece of text, such as a

web page or document. Text summarization can be used to provide a concise and relevant summary of

the key information in a user query or web page.

Content extraction is an important step in text processing, as it allows the desktop-based personal assistant system

to understand and process the user's text input. There are several Python libraries that can be used for content

extraction, including NLTK, Spacy, and TextBlob. The specific techniques and libraries used will depend on the

requirements of the personal assistant system and the type of information being extracted.

Output: The output of a desktop-based personal assistant system using Python will depend on the specific

functionality and features of the system. However, some common output types include: Text output: This can

include text-based responses to user queries or commands, such as weather forecasts, news updates, or reminders.

1. Voice output: This can include spoken responses to user queries or commands, which can be generated

using text-to-speech (TTS) technology.

2. Graphical output: This can include visualizations or graphs that display information in a more intuitive

and user-friendly way, such as stock market trends or weather forecasts.

3. Notification output: This can include notifications or alerts that notify the user of important events or

reminders, such as upcoming appointments or deadlines.

4. Action output: This can include executing actions or tasks based on user commands, such as sending

emails, scheduling appointments, or setting reminders.

The output of a desktop-based personal assistant system should be designed to be user-friendly, intuitive and

should provide relevant and accurate information based on the user's query or command. The specific types of

output used will depend on the requirements and goals of the personal assistant system, as well as the preferences

of the user.

7. RESULT AND DISCUSSION

The result and discussion of a desktop-based personal assistant system using Python will depend on the specific

functionality and features of the system, as well as the evaluation metrics used to measure its performance. Here

are some possible results and discussions that could be relevant for such a system:

1. Accuracy: One key metric for evaluating the performance of a personal assistant system is accuracy. This

can be measured in various ways, depending on the specific tasks and functions of the system. For

example, for voice recognition, accuracy can be measured in terms of the percentage of words correctly

recognized. For content extraction, accuracy can be measured in terms of the percentage of key pieces

of information correctly identified and extracted.

 Kiruthika.et.al / REST Journal on Emerging trends in Modelling and Manufacturing, 9(2), June 2023: 23-28

Copyright@2023 REST Publisher 28

2. Speed: Another important metric for a personal assistant system is speed, or the time it takes for the

system to respond to user queries or commands. Speed can be measured in terms of response time, or the

time it takes for the system to generate a response to a user query or command. Faster response times can

improve the user experience and make the system more efficient.

3. User satisfaction: The goal of a personal assistant system is to improve the user's experience and provide

useful and relevant information. Therefore, user satisfaction is an important metric for evaluating the

performance of the system. User satisfaction can be measured through user feedback, such as surveys or

ratings of the system's performance.

4. Customization: Another important aspect of a personal assistant system is customization, or the ability

to tailor the system to the user's preferences and needs. Customization can be measured in terms of the

degree to which the system can be customized, such as the ability to personalize responses, adjust

settings, or integrate with other applications.

The result and discussion of a desktop-based personal assistant system using Python should be focused on the

system's performance, effectiveness, and user satisfaction. The system should be evaluated on key metrics that

reflect its ability to understand and respond to user queries or commands, and to provide relevant and useful

information in a timely and efficient manner. The discussion should also consider the potential limitations and

challenges of the system, and ways to address these challenges to improve the system's performance and usability.

 8. CONCLUSION

Users could benefit from a practical and understandable tool for managing activities, getting to information, and

more using a desktop-based personal assistant system that utilizes Python. Enhancing productivity and providing

information. Voice input, preprocessing, feature extraction, voice-to-text conversion, content extraction, and

output are some of its crucial elements. Metrics like accuracy, speed, user happiness, and customizability can be

used to gauge the system's success, and the potential rewards are substantial. For individuals interested in creating

applications for artificial intelligence and natural language processing, it is worthwhile to investigate.

 REFERENCES

[1] Tata Jagannadha Swamy; M Nandini; Nandini B; Venkata Karthika K; V Laxmi Anvitha; Ch Sunitha (2021), “Voice

and Gesture based Virtual Desktop Assistant for Physically Challenged People”, 6th International Conference on

Trends in Electronics and Informatics (ICOEI) DOI: 10.1109/ICOEI53556.2022.9776746.

[2] Md. Rakibuz Sultan; Md Moinul Hoque; Farah Ulfath Heeya; Iftiquar Ahmed; Md. Redwanul Ferdouse; Shikder

Mejbah Ahmed mubin (2022), "Adrisya Sahayak: A Bangla Virtual Assistant for Visually Impaired", 2nd

International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST)

DOI: 10.1109/ICREST51555.2021.9331080

[3] Mehdi Mekni (2021), " An Artificial Intelligence Based Virtual Assistant Using Conversational Agents”, Journal of

Software Engineering and Applications DOI: 10.4236/jsea.2021.149027

[4] Zeeshan Raza, Aftab Amin Sheikh, Ankush Shahu, Abhijeet Thakur (2022), “VIRTUAL DESKTOP ASSISTANT

USING PYTHON”, International Research Journal of Modernization in Engineering Technology and Science.

[5] Raj Kumar Jain, Vikas Sharma, Mangilal, Rakesh Kardam,Mamta Rani (2021), “Artificial Intelligence Based A

Communicative Virtual Voice Assistant Using Python & Visual Code Technology” World Journal of Research and

Review (WJRR)

https://ieeexplore.ieee.org/author/38235399900
https://ieeexplore.ieee.org/author/37089391691
https://ieeexplore.ieee.org/author/37089389030
https://ieeexplore.ieee.org/author/37089387882
https://ieeexplore.ieee.org/author/37089389343
https://ieeexplore.ieee.org/author/37089391703
https://doi.org/10.1109/ICOEI53556.2022.9776746
https://ieeexplore.ieee.org/author/37086331430
https://ieeexplore.ieee.org/author/37085803964
https://ieeexplore.ieee.org/author/37088764875
https://ieeexplore.ieee.org/author/37088769890
https://ieeexplore.ieee.org/author/37088767252
https://ieeexplore.ieee.org/author/37088763528
https://ieeexplore.ieee.org/author/37088763528
https://doi.org/10.1109/ICREST51555.2021.9331080
https://www.scirp.org/journal/articles.aspx?searchcode=Mehdi++Mekni&searchfield=authors&page=1
https://doi.org/10.4236/jsea.2021.149027

