
 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 107

 Recent trends in Management and

Commerce
Vol: 1(3), 2020

REST Publisher; ISSN: 978-81-936097-6-7

Website: http://restpublisher.com/book-series/rmc/

Software Engineering Defect Prediction using the SPSS

Method
Moolpani Deepak Inder

SSt College of Arts and Commerce, Maharashtra, India.

*Corresponding Author Email: deepak.moolpani@sstcollege.edu.in

Abstract
Software Deficiency (SDP) is among the most helpful the SDLC test step. It distinguishes volumesDeficiency

is required and requires detailed testing.In this way, test sources can beUsed efficiently withoutExceeds the

restrictions.Software Errors has emerged as a prominent research avenue inside this field of software

engineering. Developers can detect potential issues and defects using the program's flawed predictions

improvingTests the sourcesThe program improves reliability.The best way to observe and test each activity of

the application and run the testSoftware, check the real softwareDevices to help you understand what

problems may be for the final userGo and check the softwareDifferent test environment, briefly, notice and

resolve its simple test and if notmodels for software faults are employed to automatically identify problematic

classes prior to system testing. These models can lower the cost of resources, infrastructure, and the test

period. To enhance the test procedure, we suggest a new defect prediction model in this study. Software

systems are now more expansive and intricate than ever. It can be quite difficult to prevent software diseases

with such characteristics. In order to effectively allocate scarce resources, it is required to automatically

estimate the quantity of errors in software. Several methods have been put forth to quickly and cheaply find

and fix these flaws. The effectiveness of these strategies needs to be significantly improved, though.In order to

estimate the quantity of software system flaws, we therefore suggest a novel approach in this work that makes

use of deep learning techniques. First, companies are processing the public database, which includes data

normalisation and registration changes. In the interests of preparing the required data for a machine learning

model, we perform the data sampling second. Lastly, we feed summary statistics to a deep neural network that

has been specifically created to anticipate the number of flaws. We test the suggested strategy in two reputable

datasets as well. The findings of the assessment show that the suggested approach is precise and can be

improved in more advanced approaches. Ratio studies are statistical analyses of data from appraisals and

property valuations. Nearly all states utilise them to produce quantitative measure of the proportion of current

market price about which individually estimated taxable property is appraised as well as to offer assessment

performance indicators. Software defect prediction, Deep learning, Software quality, Software metrics and

Robustness evaluation The Cronbach's Alpha Reliability result. The overall Cronbach's Alpha value for the

model is .658 which indicates 66% reliability. From the literature review, the above 50% Cronbach's Alpha

value model can be considered for analysis. Software Engineering Defect Predictionthe Cronbach's Alpha

Reliability result. The overall Cronbach's Alpha value for the model is .658 which indicates 66% reliability.

From the literature review, the above 50% Cronbach's Alpha value model can be considered for analysis.

Keywords: Software defect prediction, Deep learning, Software quality, Software metrics and Robustness

evaluation

Introduction
Software quality assurance relies heavily on software defect prediction, one of the most active study fields in the field of

software engineering. The expanding complexity and interdependence of programming has raised both the challenge of

giving quality, low-cost, and maintained software, along with the risk of creating software flaws. Incorrect or unexpected

outputs and behaviours are typical effects of software flaws. The technique of defect prediction is crucial and vital. By

identifying flawed components (events) before testing, defect predictors can lower costs and boost software quality,

allowing software developers to efficiently optimise the distribution of scarce resources for maintenance and evaluation

[1].systems for developing software. Predicting software flaws and their locations, for instance, which modules are more

flawed, is a focus. Researchers have investigated a number of methods that can produce a prediction system using known

http://restpublisher.com/book-series/rmc/

 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 108

training instances in order to do this. Experimental validation is required because we lack a thorough theory and it is

unclear which strategies are the "best" [2].Predictions of software defects can significantly boost test efficiency and

software quality. Defect prediction has already used a number of data mining techniques. We identified many Naive

Bayes-based defect predictors and examined their difference estimation techniques and algorithmic complexity. By

comparing this model to Decision Tree Learner J48 and doing a predictive performance evaluation, we discovered that

non - linear and non-Gauss Naive Bayes (MVGNP) was the most effective. MVGNP has been demonstrated to be

beneficial for deficiencies predictions by experimental results on benchmark data sets from MDP [3].It is very difficult to

foresee software defects because there are more specimens of defective modules than of working ones. Since many

information mining algorithms attempt to increase overall accuracy yet struggle in classes with insufficient sample sizes,

they end up producing subpar models in this situation. For instance, an algorithm that consistently forecasts a block as

genetic condition will attain the greatest accuracy if the total number of flawed samples surpasses 95% of the problematic

samples[4].studies that anticipate software defects Although there are several research articles on the subject, according

to Fenton and Neal (1999), the defect prediction problem has not yet been fully resolved. When disabilities are identified

or observed, several incorrect assumptions are made, which results in incorrect conclusions. When we consider that some

describe flaws as regarding that matter and others as residuals, their claim can be better understood. We can observe from

the publications on problem prediction that early studies made considerable use of standard code features. However,

additional measurements, such as process measurements, are also helpful and should be looked into aside from the

impact of standard document measurement techniques on defect prediction [5].Since then, an astounding number of

innovative and even updated methods have been found for software metrics. This was particularly true as investigation

into mining application code, sometimes known as "empirical software engineering 2.0," increased. For a number of

reasons, we are not trying to criticise empirical programming skills as a whole. Defect prediction, however, is a perfect

illustration of empirical software development research where the science community have lost all sense of the forest

amidst the numerous trees to be felled [6].In order to comprehend the characteristics of defective blocks, predictive

defect models are applied. In the context of a humongous software system, investigate the relationship among both

developer-centered organizational change measures and the likelihood of customer-reported defects. Also look at the

influence of software on software reliability and indeed the characteristics of increased and surprise defects in workplace

circumstances. The association between modern code review procedures, defect-proneness, and software quality

Planning programmers for quality improvement requires this understanding [7].Using predictive classification techniques

from code properties, software defect prediction seeks to quickly detect fault-prone modules in order to enhance software

quality and test efficiency. For this purpose, a number of categorization models have been assessed. However, further

study is required to improve convergence throughout studies and further increase confidence throughout test results

because there are conflicting results regarding actual performance of one classification and the utility of measurement

system classification in general. We take into account three possible sources of bias: making comparisons classifiers on

one or a limited number of internally developed sets of data, relying on conceptually unnecessary accuracy indicators for

operating system error prediction and bridge comparative, and lastly, sparingly employing statistical testing techniques.

reliable empirical results [8].Data for software modules is typically scarce. In this study, we suggest using dictionary

learning as a tool for predicting software defects. Using metric characteristics taken from open-source software, we learn

several dictionaries (containing defective blocking and non-defective blocking sub-dictionaries and the overall

dictionary) and scanty representation coefficients. Additionally, we account for the misclassification cost issue because

misclassifying defective batches typically entails a larger risk cost than correctly classifying non-defective ones. We

suggest a cost-sensitive racially discriminatory dictionary learning (CDDL) method for identifying and forecasting

software defects [9].prediction of software defects. Although asymmetrical learning can enhance prediction performance,

overall findings appear to be quite uneven and conflicting. This uncertainty surrounding the application of discrepancy

learning for the prediction of software defects, in our opinion, stems from three key factors. First off, standard

performance metrics are flawed. Second, the degree of discrepancy in the data on software defects and its impact on

forecasting accuracy have not been studied. Third, there is a lack of knowledge regarding the connection between

asymmetric learning techniques and classifier selection [10].Software defect assertion: A regression in which a regression

model forecasts the quantity of defects and a classifier forecasts the module's class label (eg binary classification: defect

or no defect). The ensemble learning procedure for a classification problem entails two steps: (1) training a set of

independent classifiers known as base classifiers, and (2) integrating the output of the classification models using

aggregating or voting to arrive at a final prediction. Heterogeneous refers to a single type of algorithm when the

underlying classifier is made up of various types of algorithms [11].This study looks at software features that aid

practitioners in comprehending software faults that have an impact on code quality in addition to anticipating software

vulnerabilities for developers and businesses. We also wish to investigate the capability of these traits to forecast

software flaws. Our study investigates the research issues that follow in light of this objective. prediction of software

defects. First off, standard performance metrics are flawed. Second, the degree of discrepancy in the data on software

defects and its relationship to forecasting accuracy have not been investigated. Lastly, the connection between

asymmetric learning strategies and classifier selection is not fully understood. The selection of data source and inputs

metric kinds is similar [12].prediction of software defects. The SMOTE methodology, which overestimates

representations of a minority class by creating representations of the minority class, is the subject of our experiments. A

 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 109

new instance of the minority class is created by SMOTE at a random location along the feature space line that connects it

to its closest neighbours of the same class. By using univariate sampling, we correspondingly undersample the

classification results [13].The software history of a project is important since a project's properties could be unstable at

first. So because bugs in the most recent modifications have yet to be found and repaired, they are not included. Keep in

mind that this is simply an estimate. In actuality, we anticipate recent modifications so that programmers can find

mistakes early, as we tested in our research project [14].prediction of software defects. Extracting software systems from

free software repositories is the initial step. A software module could be a class, a file, a method, a code modification,

etc. Marking the software components as buggy or clean is the next step. Information about bugs is gleaned through post-

release flaws reported in bug tracking programmes like Bugzilla. A software module is labelled as deprecated if it has

flaws discovered in later releases. Extraction of the utilizing advanced from the application components is the third stage.

Character-based, new currency, Formation of advanced glycation end, AST-tree-based, ASTpath-based, and Alanine

aminotransferase code characteristics are frequent in deep learning-based software fault prediction [15].software

applications. For other systems not employed in studies, our method might yield better or worse results. By choosing

software with a variety of functionalities (software platforms, servers, and desktop applications), built in several

programming languages, we reduce this hazard [16]."DAASE: Dynamic Adaptation Automated Software Engineering"

and "SEBASE: Software Development by Automated Search." The first author's trip to Xidian University in China,

funded by an EU FP7 IRSES grant on "NICaiA: Environment Inspired Computing and its Applications," allowed him to

finish some of the work (Grant 247619). J.-C. Lu, associate editor. The Institute of Excellence and Development in

Cognitive Computing and Applications is where the authors are located [17].to anticipate software flaws. By employing

the Wavelet coefficients score sampling approach on the labelled defect-free blocks, we first create a training dataset

with labels that are comparable to classes. Then, we compute the relation graph's negative sparse weights, which act as

grouping indicators, using the negative sparse technique. Lastly, we iteratively anticipate the labels of unmarked

programming blocks in a negatively sparse graph using a label propagation approach. For the purpose of classifying and

predicting software defects, we recommend an adverse sparse regression label propagation method that makes extensive

use of both labelled and unlabeled data to increase generalizability [18].software undertaking. After the model has been

created, the next stage is to gather the information to validate that model; in order to accomplish this successfully, a

thorough description of each variable was needed. In Section 3.1, we provide a first-level thorough explanation of the set

of criteria. An excerpt from a later survey given to project management team to gather information on finished projects is

provided in Section 3.2. Some of the problems with this approach to measuring construction quality factors are discussed

in Section 3.3 [19].Techniques for predicting software problems make it possible to find defective software components.

The sequence in which the programming should be inspected can be decided using code assessment or unit testing.

Developers can then devote their limited development resources to the parts of the code that are the most likely to have

problems. The personnel and time costs that are saved as a result can lower total maintenance costs and boost business

profitability [20].

Materials and Methods
Software defect prediction: One of the most useful metrics in the test phase of sdlc is software deficiency (SDP). The

volume that needs faulty and thorough testing is identified. This allows for the efficient use of test resources while yet

respecting barriers. In order to improve software reliability, the study of software defects has grown to be a prominent

research area. In hopes of improving the dependability of the programmer, developers employ programmer deficiency

predictions to aid in the identification of prospective issues and the improvement of test resources.

Deep learning: Deep learning is a sub -group of mechanical learning, which is basically a neurological network with

three or more layers. These neurological networks seek to simulate the behavior of the human brain-although it is not

compatible with its ability-it allows you to "learn" from high data. Deep learning is a technological learning method that

teaches computers how to learn by doing, just as humans do. A key component of driverless automobiles is deep

learning, which makes it easier to recognise stops or tell a pedestrian from a lamppost.

Software quality: A discipline of study and practise known as "software quality" is described as describing the desired

characteristics of software products. Software quality can be approached from two different angles: defect prevention and

quality attributes. Software that does not contain acceptable errors or defects, is provided promptly and within the allotted

budget, and satisfies and upholds requirements and/or expectations is considered to be of high quality. Software quality

in the context of software engineering represents both structural and functional quality.

Software metrics: The software metric is the measurement of measured or calculated software properties. Software

measurements are valuable for a number of reasons, including software performance, planning work, productivity and

many applications. Software measurements include measurement quality, including some quantities of measurements.

This can be classified into three categories: product measurements, process measurements and project measurements. In

the first part of this blog posting series on measurements, we have reviewed four types of promidius measurements:

counters, measurements, histograms and wrinkles.

Robustness evaluation: The strong assessment volume in the ration is simultaneously evaluating a large number of

potential bug scenes and providing versatile tools for a detailed analysis of project strength. The current version supports

the system and density uncertainty, which is connected to create a group shot. One of the most widely used definitions of

 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 110

the pattern in the pharmacy is presented by ICH: 'The strongest of an analysis process, which refers to its ability to not be

affected by the variations in the parameters, and the method of deliberately.

Method: SPSS Statistics is a statistical control Advanced Analytics, Multivariate Analytics, Business enterprise

Intelligence and IBM a statistic created by a software program is a package crook research. A set of generated statistics is

Crook Research is for a long time SPSS Inc. Produced by, it was acquired by IBM in 2009. Current versions (after 2015)

icon Named: IBM SPSS Statistics. The name of the software program is to start with social Became the Statistical

Package for Science (SPSS) Reflects the real marketplace, then information SPSS is converted into product and service

solutions Widely used for statistical evaluation within the social sciences is an application used. pasted into a syntax

statement. Programs are interactive Directed or unsupervised production Through the workflow facility. SPSS Statistics

is an internal log Organization, types of information, information processing and on applicable documents imposes

regulations, these jointly programming make it easier. SPSS datasets are two-dimensional Have a tabular structure, in

which Queues usually form Events (with individuals or families) and Columns (age, gender or family income with) to

form measurements. of records Only categories are described: Miscellaneous and Text content (or "string"). All statistics

Processing is also sequential through the statement (dataset) going on Files are one-to-one and one-to-one Many can be

matched, although many are not in addition to those case-variables form and By processing, there may be a separate

matrix session, There you have matrix and linear algebra on matrices using functions Information may be processed.

Result and Discussion

TABLE 1. Descriptive Statistics

 N Range Minimu

m

Maximu

m

Sum Mean Std. Deviation Varian

ce

Software defect

prediction

90 4 1 5 282 3.13 .115 1.093 1.196

Deep learning 90 4 1 5 270 3.00 .131 1.245 1.551

Software quality 90 4 1 5 291 3.23 .133 1.264 1.597

Software metrics 90 4 1 5 294 3.27 .119 1.130 1.276

Robustness

evaluation

90 4 1 5 297 3.30 .158 1.495 2.235

Valid N (listwise) 90

Table 1 shows the descriptive statistics values for analysis N, range, minimum, maximum, mean, standard deviation

Software defect prediction, Deep learning, Software quality, Software metrics and Robustness evaluationthis also using.

TABLE 2. Frequencies Statistics

 Software defect

prediction

Deep

learning

Software

quality

Software

metrics

Robustness

evaluation

N Valid 90 90 90 90 90

Missing 0 0 0 0 0

Mean 3.13 3.00 3.23 3.27 3.30

Std. Error of Mean .115 .131 .133 .119 .158

Median 3.00 3.00 3.00 3.00 3.00

Mode 3 3 3 3 5

Std. Deviation 1.093 1.245 1.264 1.130 1.495

Variance 1.196 1.551 1.597 1.276 2.235

Skewness -.429 .321 -.043 -.260 -.098

Std. Error of Skewness .254 .254 .254 .254 .254

Kurtosis .047 -.794 -.900 -.198 -1.484

Std. Error of Kurtosis .503 .503 .503 .503 .503

Range 4 4 4 4 4

Minimum 1 1 1 1 1

Maximum 5 5 5 5 5

Sum 282 270 291 294 297

Percentile

s

25 3.00 2.00 2.00 3.00 2.00

50 3.00 3.00 3.00 3.00 3.00

75 4.00 4.00 4.00 4.00 5.00

 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 111

Table 2 Show the Frequency Statistics in Software Engineering Defect Prediction.Software defect prediction, Deep

learning, Software quality, Software metrics and Robustness evaluationcurve values are given.

TABLE 3. Reliability Statistics

Cronbach's Alpha Based on Standardized Items N of Items

.658 5

Table 3 shows the Cronbach's Alpha Reliability result. The overall Cronbach's Alpha value for the model is .658

which indicates 66% reliability. From the literature review, the above 50% Cronbach's Alpha value model can be

considered for analysis.
TABLE 4. Reliability Statistic individual

Cronbach's Alpha if Item

Deleted

Software defect prediction
.587

Deep learning
.656

Software quality
.536

Software metrics
.591

Robustness evaluation
.614

Table 4 Shows the Reliability Statistic individual parameter Cronbach's Alpha Reliability results. The Cronbach's

Alpha value for Software defect prediction.587, Deep learning .656, Software quality.536, Software metrics.591 and

Robustness evaluation.614 this indicates all the parameter can be considered for analysis.

 FIGURE 1. Software defect prediction

Figure 1 shows the histogram plot for Software defect prediction from the figure it is clearly seen that the data are slightly

Left skewed due to more respondent chosen 3 for Software defect prediction except the 2 value all other values are under the

normal curve shows model is significantly following normal distribution.

 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 112

FIGURE 2. Deep learning

Figure 2 shows the histogram plot for Deep learning from the figure it is clearly seen that the data are slightly Left

skewed due to more respondent chosen 3 for Deep learning except the 2 value all other values are under the normal curve

shows model is significantly following normal distribution.

FIGURE 3. Software quality

Figure 3 shows the histogram plot for Software quality from the figure it is clearly seen that the data are slightly Left

skewed due to more respondent chosen 3 for Software quality except the 3 value all other values are under the normal

curve shows model is significantly following normal distribution.

 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 113

FIGURE 4. Software metrics

Figure 4 shows the histogram plot for Software metricsfrom the figure it is clearly seen that the data are slightly Left

skewed due to more respondent chosen 3 for Software metrics except the 2 value all other values are under the normal

curve shows model is significantly following normal distribution.

FIGURE 5. Robustness evaluation

Figure 5 shows the histogram plot for Robustness evaluationfrom the figure it is clearly seen that the data are slightly

Right skewed due to more respondent chosen 5 for Robustness evaluationexcept the 2 value all other values are under the

normal curve shows model is significantly following normal distribution.

 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 114

TABLE 5. Correlations

Software defect

prediction

Deep learning Software

quality

Software

metrics

Robustness

evaluation

Software defect

prediction
1 .149 .368** .407** .264*

Deep learning
.149 1 .214* .096 .290**

Software quality
.368** .214* 1 .499** .319**

Software metrics
.407** .096 .499** 1 .172

Robustness evaluation
.264* .290** .319** .172 1

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Table 5 shows the correlation between motivation parameters for Software defect prediction. For Software metricsis

having highest correlation with Deep learning and having lowest correlation.Next the correlation between motivation

parameters for Deep learning. For Robustness evaluation is having highest correlation with Software defect prediction

and having lowest correlation.Next the correlation between motivation parameters for Software quality. For Software

metrics is having highest correlation with Deep learning and having lowest correlation.Next the correlation between

motivation parameters for Software metrics. For Software quality is having highest correlation with Deep learning and

having lowest correlation. Next the correlation between motivation parameters for Robustness evaluation. For Software

qualityis having highest correlation with Software metrics and having lowest correlation.

Conclusion

Software Deficiency (SDP) is among the most helpful the SDLC test step. It distinguishes volumes Deficiency is

required and requires detailed testing. In this way, test sources can be Used efficiently without Exceeds the restrictions.

Software Errors has emerged as a prominent research avenue inside this field of software engineering. Developers can

detect potential issues and defects using the program's flawed predictions improving Tests the sources The program

improves reliability. The best way to observe and test each activity of the application and run the test Software, check the

real software Devices to help you understand what problems Software systems are now more expansive and intricate than

ever. It can be quite difficult to prevent software diseases with such characteristics. In order to effectively allocate scarce

resources, it is required to automatically estimate the quantity of errors in software. Several methods have been put forth

to quickly and cheaply find and fix these flaws. systems for developing software. Predicting software flaws and their

locations, for instance, which modules are more flawed, is a focus. Researchers have investigated a number of methods

that can produce a prediction system using known training instances in order to do this. Experimental validation is

required because we lack a thorough theory and it is unclear which strategies are the "best" Predictions of software

defects can significantly boost test efficiency and software quality. Defect prediction has already used a number of data

mining techniques. We identified many Naive Bayes-based defect predictors and examined their difference estimation

techniques and algorithmic complexity The software metric is the measurement of measured or calculated software

properties. Software measurements are valuable for a number of reasons, including software performance, planning

work, productivity and many applications. Software measurements include measurement quality, including some

quantities of measurements. The strong assessment volume in the ration is simultaneously evaluating a large number of

potential bug scenes and providing versatile tools for a detailed analysis of project strength. The current version supports

the system and density uncertainty, which is connected to create a group shot. One of the most widely used definitions of

the pattern in the pharmacy is presented by ICH: 'The strongest of an analysis process, which refers to its ability to not be

affected by the variations in the parameters, and the method of deliberately. Ratio studies are statistical analyses of data

from appraisals and property valuations. Nearly all states utilise them to produce quantitative measure of the proportion

of current market price about which individually estimated taxable property is appraised as well as to offer assessment

performance indicators. Software defect prediction, Deep learning, Software quality, Software metrics and Robustness

Evaluation.The Cronbach's Alpha Reliability result. The overall Cronbach's Alpha value for the model is .658 which

indicates 66% reliability. From the literature review, the above 50% Cronbach's Alpha value model can be considered for

analysis.

REFERENCES

1. Li, Zhiqiang, Xiao-Yuan Jing, and Xiaoke Zhu. "Progress on approaches to software defect prediction." Iet

Software 12, no. 3 (2018): 161-175.

 Badiyani Anand Manaha,r et.al / Recent trends in Management and Commerce 1(3) 2020, 107-115

Copyright@ REST Publisher 115

2. Shepperd, Martin, David Bowes, and Tracy Hall. "Researcher bias: The use of machine learning in software

defect prediction." IEEE Transactions on Software Engineering 40, no. 6 (2014): 603-616.

3. Wang, Tao, and Wei-hua Li. "Naive bayes software defect prediction model." In 2010 International conference on

computational intelligence and software engineering, pp. 1-4. Ieee, 2010.

4. Rodriguez, Daniel, Israel Herraiz, Rachel Harrison, Javier Dolado, and José C. Riquelme. "Preliminary

comparison of techniques for dealing with imbalance in software defect prediction." In Proceedings of the 18th

International Conference on Evaluation and Assessment in Software Engineering, pp. 1-10. 2014.

5. Okutan, Ahmet, and OlcayTanerYıldız. "Software defect prediction using Bayesian networks." Empirical

Software Engineering 19 (2014): 154-181.

6. Lanza, Michele, Andrea Mocci, and Luca Ponzanelli. "The tragedy of defect prediction, prince of empirical

software engineering research." IEEE Software 33, no. 6 (2016): 102-105.

7. Tantithamthavorn, Chakkrit, Shane McIntosh, Ahmed E. Hassan, Akinori Ihara, and Kenichi Matsumoto. "The

impact of mislabelling on the performance and interpretation of defect prediction models." In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, vol. 1, pp. 812-823. IEEE, 2015.

8. Lessmann, Stefan, Bart Baesens, Christophe Mues, and SwantjePietsch. "Benchmarking classification models for

software defect prediction: A proposed framework and novel findings." IEEE transactions on software

engineering 34, no. 4 (2008): 485-496.

9. Jing, Xiao-Yuan, Shi Ying, Zhi-Wu Zhang, Shan-Shan Wu, and Jin Liu. "Dictionary learning based software

defect prediction." In Proceedings of the 36th international conference on software engineering, pp. 414-423.

2014.

10. Song, Qinbao, YuchenGuo, and Martin Shepperd. "A comprehensive investigation of the role of imbalanced

learning for software defect prediction." IEEE Transactions on Software Engineering 45, no. 12 (2018): 1253-

1269.

11. Aljamaan, Hamoud, and AmalAlazba. "Software defect prediction using tree-based ensembles." In Proceedings

of the 16th ACM international conference on predictive models and data analytics in software engineering, pp.

1-10. 2020.

12. Esteves, Geanderson, Eduardo Figueiredo, Adriano Veloso, Markos Viggiato, and NivioZiviani. "Understanding

machine learning software defect predictions." Automated Software Engineering 27, no. 3-4 (2020): 369-392.

13. Pelayo, Lourdes, and Scott Dick. "Applying novel resampling strategies to software defect prediction."

In NAFIPS 2007-2007 Annual meeting of the North American fuzzy information processing society, pp. 69-72.

IEEE, 2007.

14. Tan, Ming, Lin Tan, Sashank Dara, and Caleb Mayeux. "Online defect prediction for imbalanced data." In 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 2, pp. 99-108. IEEE, 2015.

15. Pan, Cong, Minyan Lu, and Biao Xu. "An empirical study on software defect prediction using codebert

model." Applied Sciences 11, no. 11 (2021): 4793.

16. Wang, Song, Taiyue Liu, Jaechang Nam, and Lin Tan. "Deep semantic feature learning for software defect

prediction." IEEE Transactions on Software Engineering 46, no. 12 (2018): 1267-1293.

17. Wang, Shuo, and Xin Yao. "Using class imbalance learning for software defect prediction." IEEE Transactions

on Reliability 62, no. 2 (2013): 434-443.

18. Zhang, Zhi-Wu, Xiao-Yuan Jing, and Tie-Jian Wang. "Label propagation based semi-supervised learning for

software defect prediction." Automated Software Engineering 24 (2017): 47-69.

19. Fenton, Norman, Martin Neil, William Marsh, Peter Hearty, Lukasz Radlinski, and Paul Krause. "Project data

incorporating qualitative factors for improved software defect prediction." In Third International Workshop on

Predictor Models in Software Engineering (PROMISE'07: ICSE Workshops 2007), pp. 2-2. IEEE, 2007.

20. Qiao, Lei, Xuesong Li, QasimUmer, and Ping Guo. "Deep learning based software defect

prediction." Neurocomputing 385 (2020): 100-110.

